Automatic Procedure and the Use of the Smith Chart in Impedance Matching in Analog Circuits
Abstract
1. Introduction
- Pi is the power of the incident wave;
- Pr is the power of the wave reflected by the load.
2. Smith Chart in Adapting Analog Circuits
- (1)
- The lines with complex values are transformed into circles;
- (2)
- Angles are preserved locally.
- (1)
- —for an open circuit;
- (2)
- —for a short circuit;
- (3)
- —for a matched load;
- (1)
- The Smith chart is a compact and useful image of passive impedances from 0 to ∞.
- (2)
- Impedance mismatch problems are solved easily in the chart. There are eight possible impedance matching networks (Figure 6):
- (3)
- The Smith chart is especially useful for radio frequency, microwave applications, and wireless power transfer systems because it translates impedances and admittances into reflection factors and vice versa. In these higher frequency ranges, it is more convenient to describe electrical quantities using forward and backward waves.
3. Analytic Computation and Finding L- and T-Section Component Values
3.1. Finding L-Section Component Values
3.2. Finding T Network Component Values
3.3. Designing a Pi Matching Network
4. Automatic Procedure for Adapting Analog Circuits: Four Different L–Sections for One Impedance Matching Problem
4.1. The Automatic Procedure for Adapting Analog Circuits
- -
- In the impedance diagram, the movement from point (A) to point (B), on the 0.2 resistance circle, is equivalent to connecting in series a capacitor with the value Cs = 15.915 nF.
- -
- Also in the impedance diagram, the movement from A to C, on the resistance circle with value of 0.2, is equivalent to connecting in series a capacitor with the value Cs = 3.183 nF
- -
- In the admittance diagram, the movement from A to B, on the conductance circle with value of 0.5, is equivalent to connecting in parallel a capacitor with the value Cp = 3.183 nF
4.2. Frequency-Sweep Analysis and Bandwidth Evaluation of Matching Networks
- (1)
- L-section (Q = 5, BW = 200 MHz): Offers a moderate fixed bandwidth, illustrating typical bandwidth limitations;
- (2)
- T network (Q = 3, BW = 333 MHz): Demonstrates a broader bandwidth, reflecting its advantage in applications requiring wider frequency coverage;
- (3)
- Pi network (Q = 8, BW = 125 MHz): Shows significantly narrower bandwidth, ideal for selective applications demanding higher quality factors.
4.3. Practical Considerations: Component Tolerances, Parasitic Effects, and PCB Implementation
4.3.1. Component Tolerances and Availability
4.3.2. Parasitic Effects
4.3.3. PCB Layout Considerations
4.3.4. Experimental Validation and Measurements
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bird, J. Bird’s Electrical Circuit Theory and Technology; Routledge: London, UK, 2021. [Google Scholar]
- Smith, P.H. Transmission-line calculator. Electronics 1939, 12, 29–31. [Google Scholar]
- Niculae, D.; Iordache, M.; Bobaru, L.; Stănculescu, M.; Grib, M.; Laudatu, O. Adapting the Impedance of the Signal Transmission Lines. In Proceedings of the 2023 10th International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, 21–23 June 2023. [Google Scholar]
- Asanache, R. Contributions Regarding the Use of S Parameters and Smith Diagram in the Qualitative Analysis of Analog Circuits; Polytechnic University of Bucharest: Bucharest, Romania, 2021. [Google Scholar]
- Iordache-Coordonator, M.; Stanculescu, M.; Asanache, R.; Bobaru, L.; Deleanu, S.; Niculae, D.; Rezmeriță, G. Analog Circuit Analysis Using S-Parameters and Smith Chart; MATRIX ROM: Bucharest, Romania, 2022. [Google Scholar]
- Blujescu, D. Smith Chart—Questions and Answers, Radio Communications and Amateur Radio; Conex Club: Bucharest, Romania, 2002. [Google Scholar]
- Smith, P.H. Electronic Applications of the Smith Chart; Noble Publishing Corporation: Atlanta, GA, USA, 2000. [Google Scholar]
- Muller, A. A 3D Smith chart for active and passive microwave circuits and visual complex analysis. UPB Sci. Bull. Series C 2012, 74, 2. [Google Scholar]
- Meinke, H.; Gundlach, F.W. Pocket Book of High Frequency Technology; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Gonzales, G. Microwave Transistor Amplifiers: Analysis and Design; Prentice Hall: Englewood Cliffs, NJ, USA, 1997. [Google Scholar]
- Dellsperger, F. Smith Chart Software V4.0, January 2017. Available online: http://www.fritz.dellsperger.net/smith.html (accessed on 20 November 2024).
- Chan, K.-C.; Hartner, A. Impedance Matching and the Smith Chart. RF Design, July 2000. Available online: https://web.ece.ucsb.edu/Faculty/rodwell/Classes/ece218c/tutorials_etc/Impedance_Matching.pdf (accessed on 30 June 2025).
- Müller, A.; Dascalu, D.C.; Soto, P.; Boria, V.E. Special Report, The 3D Smith Chart and Its Practical Applications, Microwave Journal, July 2012. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://riunet.upv.es/bitstreams/870778f2-0687-470e-a731-78dfce718631/download&ved=2ahUKEwjbjrfY3aqOAxXhgf0HHZsYH9YQFnoECDMQAQ&usg=AOvVaw0ishfkFFO22rn1-osxxobM (accessed on 20 February 2025).
- Iordache, M. Symbolic, Numerical-Symbolic and Numerical Simulation of Analog Circuits—Program User’s Guides; MATRIX ROM: Bucharest, Romania, 2015. [Google Scholar]
- Stanculescu, M.; Iordache, M.; Niculae, D.; Bobaru, L.; Bucata, V. Algorithm for Computing S Parameters and Their Use for Studying Efficiency of Electromagnetic Energy Wireless Transfer Systems. Rev. Roum. Sci. Techn.—Électrotechn. et Énerg 2018, 63, 138–144. [Google Scholar]
- Stănculescu, M.; Iordache, M.; Niculae, D.; Bobaru, L.; Rezmeriță, G.; Deleanu, S. Presentation of the Smith Chart and Applications to Analog Circuit Analysis. In Proceedings of the 2023 13th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 March 2023. [Google Scholar] [CrossRef]
- Iordache, M.; Dumitriu, L. Computer-Aided Simulation of Analog Circuits—Algorithms and Computational Techniques; POLITEHNICA Press: Bucharest, Romania, 2014. [Google Scholar]
- Smith Chart Fundamentals. Maxim Integrated, Tutorial 742. July 2002. Available online: https://www.microwaves101.com/downloads/smith.PDF (accessed on 12 June 2019).
- Reflection Coefficient to Impedance Converter. Available online: http://leleivre.com/rf_gammatoz.html (accessed on 17 September 2024).
- VSWR Calculator. Available online: http://www.antenna-theory.com/definitions/vswr-calculator.php (accessed on 24 October 2024).
- Galitskaya, K. Antenna Matching Using the Smith Chart. Microw. J. Available online: https://www.microwavejournal.com/blogs/31-simulation-advice-katerina-galitskaya/post/43425-antenna-matching-using-the-smith-chart (accessed on 5 January 2025).
- Lee, S. Smith Chart Essentials for Microwave Engineers. Number Analytics; 12 June 2025. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.numberanalytics.com/blog/smith-chart-essentials-for-microwave-engineers&ved=2ahUKEwiFh4mk4KqOAxXaQvEDHSu6HpMQFnoECBYQAQ&usg=AOvVaw2WrmSX6ZMn3y7dTFYNK5-3 (accessed on 30 June 2025).
- Banerjee, A. Broadband Impedance Matching. In Automated Broad and Narrow Band Impedance Matching for RF and Microwave Circuits; Springer: Berlin/Heidelberg, Germany, 2019; Chapter 3; pp. 17–36. [Google Scholar]
- Yang, X.; Zhang, Z.; Xu, M.; Li, S.; Zhang, Y.; Zhu, X.F.; Ouyang, X.; Alù, A. Digital Non-Foster-Inspired Electronics for Broadband Impedance Matching. Nat. Commun. 2024—Demonstrates a five-fold bandwidth enhancement in non-Foster matched resonators. Nat. Commun. 2024, 15, 4346. [Google Scholar] [CrossRef] [PubMed]
- Impedance Matching Basics: Smith Charts. Microwaves & RF (PDF Tutorial), 2021. Available online: https://www.mwrf.com/technologies/embedded/systems/document/21174614/impedance-matching-basics-smith-charts-pdf-download (accessed on 16 November 2024).
- Couraud, B.; Vauche, R.; Daskalakis, S.N.; Flynn, D.; Deleruyelle, T.; Kussener, E.; Assimonis, S. Internet of Things: A Review on Theory Based Impedance Matching Techniques for Energy Efficient RF Systems. J. Low Power Electron. Appl. 2021, 11, 16. [Google Scholar] [CrossRef]
- Analog Devices. Impedance Matching and Smith Chart Impedance. Tech Article, 22 July 2002. Available online: https://www.analog.com/en/resources/technical-articles/impedance-matching-and-smith-chart-impedance-maxim-integrated.html (accessed on 19 March 2025).
- Wang, B.; Cao, Z. A Review of Impedance Matching Techniques in Power Line Communications. Electronics 2019, 8, 1022. [Google Scholar] [CrossRef]
- Fu, X.; Gou, Y.; Li, J. Broadband impedance matching design method for dipole acoustic logging transducer based on sparrow search algorithm. Sens. Actuators A Phys. 2025, 382, 116143. [Google Scholar] [CrossRef]
- Khare, R.; Nema, R. Review of Impedance Matching Networks for Bandwidth Enhancement. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 92–96. Available online: https://citeseerx.ist.psu.edu/document?doi=d06f70454491af8aa887670d5fa75477f8ff1036 (accessed on 30 June 2025).
- Shlivinski, Y.; Hadad, Y. Beyond the Bode-Fano Bound: Wideband Impedance Matching for Short-Pulses. arXiv 2018, arXiv:805.03704. [Google Scholar]
- Vander Missen, Z.; Macheret, S.; Semnani, A.; Peroulis, D. Plasma Switch-Based Technology for High-Speed and High-Power Impedance Tuning. In Proceedings of the 2021 IEEE 21st Annual Wireless and Microwave Technology Conference (WAMICON), Sand Key, FL, USA, 28–29 April 2021. [Google Scholar]
- Er, S.; Liu, E.; Chen, M.; Li, Y.; Liu, Y.; Zhao, T.; Wang, H. Deep Learning Assisted End-to-End Synthesis of mm-Wave Passive Networks with 3D EM Structures: A Study on A Transformer-Based Matching Network. arXiv 2022. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering, 4th ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Collin, R.E. Foundations for Microwave Engineering, 2nd ed.; IEEE Press: Piscataway, NJ, USA, 2000. [Google Scholar]
- Matthaei, G.; Young, L.; Jones, E.M.T. Microwave Filters, Impedance-Matching Networks, and Coupling Structures; Artech House: Norwood, MA, USA, 1980. [Google Scholar]
- Ramo, S.; Whinnery, J.R.; Van Duzer, T. Fields and Waves in Communication Electronics, 3rd ed.; Wiley: Hoboken, NJ, USA, 1994. [Google Scholar]
- Razavi, B. RF Microelectronics, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2011. [Google Scholar]
- Van Valkenburg, M.E. Network Analysis, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1974. [Google Scholar]
- Kurokawa, K. Power Waves and the Scattering Matrix. IEEE Trans. Microw. Theory Tech. 1965, 13, 194–202. [Google Scholar] [CrossRef]
- Liao, S.Y. Microwave Devices and Circuits; Prentice Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Orfanidis, S.J. Electromagnetic Waves and Antennas. 2016. Available online: https://gctjaipur.files.wordpress.com/2015/08/electromagnetic-waves-and-antennas.pdf (accessed on 18 November 2018).
- Goebel, M. RF and Microwave Coupled-Line Circuits; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
Arbitrarily Choose Parameter Value | Overall Parameter Values Two Elements and Complex Matching Impedance |
---|---|
L2 = 9.0 nH | C2 = 5.914 pF, C3 = 4.397 pF, Ze_Tnet_L1 = 49.9999 + 0.808 × 10−06 j |
C2 = 4.0 pF | L2 = 12.505 nH, C3 = 2.568 pF, Ze_Tnet_C2 = 49.9999 + 0.3746 × 10−05 j |
C3 = 1.0 pF | L2 = 16.261 nH, C2 = 2.658 pF, Ze_Tnet_C3 = 50.0 + 0.125 × 10−05 j |
Intermediate Point | Reactance (x) | Susceptance (b) |
---|---|---|
A | 0.8 | −1.2 |
B | 0.4 | −2 |
Arbitrarily Choose Parameter Value | Overall Parameter Values Two Elements and Complex Matching Impedance |
---|---|
L1 = 9.0 nH | C2 = 5.914 pF, C3 = 4.397 pF, Ze_Tnet_L1 = 49.9999 + 0.808 × 10−06 j |
C2 = 4.0 pF | L1 = 12.505 nH, C3 = 2.568 pF, Ze_Tnet_C2 = 49.9999 + 0.3746 × 10−05 j |
C3 = 1.0 pF | L1 = 16.261 nH, C2 = 2.658 pF, Ze_Tnet_C3 = 50.0 + 0.125 × 10−05 j |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgescu, A.-F.; Niculae, D.; Iordache, M.; Stănculescu, M.; Bumbeneci, A.-M.; Bobaru, L.; Zainea, G.; Rotaru, M. Automatic Procedure and the Use of the Smith Chart in Impedance Matching in Analog Circuits. Electronics 2025, 14, 2746. https://doi.org/10.3390/electronics14142746
Georgescu A-F, Niculae D, Iordache M, Stănculescu M, Bumbeneci A-M, Bobaru L, Zainea G, Rotaru M. Automatic Procedure and the Use of the Smith Chart in Impedance Matching in Analog Circuits. Electronics. 2025; 14(14):2746. https://doi.org/10.3390/electronics14142746
Chicago/Turabian StyleGeorgescu, Adrian-Florian, Dragoș Niculae, Mihai Iordache, Marilena Stănculescu, Ana-Maria Bumbeneci, Lavinia Bobaru, Georgiana Zainea, and Mihai Rotaru. 2025. "Automatic Procedure and the Use of the Smith Chart in Impedance Matching in Analog Circuits" Electronics 14, no. 14: 2746. https://doi.org/10.3390/electronics14142746
APA StyleGeorgescu, A.-F., Niculae, D., Iordache, M., Stănculescu, M., Bumbeneci, A.-M., Bobaru, L., Zainea, G., & Rotaru, M. (2025). Automatic Procedure and the Use of the Smith Chart in Impedance Matching in Analog Circuits. Electronics, 14(14), 2746. https://doi.org/10.3390/electronics14142746