Stability Analysis of Non-Foster Impedance Inverters
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NF | Non-Foster |
NC | Negative capacitor |
NIC | Negative impedance converter |
NGD | Negative group delay |
OCS | Open-circuit stable |
RHS | Right-hand side |
SCS | Short-circuit stable |
References
- Zverev, J.A.I. Handbook of Filter Synthesis; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Matthaei, G.L.; Young, L.; Jones, E.M.T. Microwave Filters, Impedance-Matching Networks, and Coupling Structure, 2nd ed.; Artech House: Dedham, MA, USA, 1980. [Google Scholar]
- Sussman-Fort, S.E.; Rudish, R.M. Non-Foster impedance matching of electrically-small antennas. IEEE Trans. Antennas Propag. 2009, 57, 2230–2241. [Google Scholar] [CrossRef]
- Mocanu, I.A. Compact Dual Band Ring Coupler Using Miniaturized Metamaterial Left-Handed Impedance Inverters. IEEE Access 2021, 9, 86119–86131. [Google Scholar] [CrossRef]
- Kholodnyak, D.V. Metamaterial transmission lines and their applications. In Proceedings of the 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg and Moscow, Russia, 1–3 February 2017; pp. 3–8. [Google Scholar]
- Kalmykov, N.; Kholodnyak, D. Non-Foster Elements Pave the Way to Design Novel Wideband and Tunable Bandpass Filters. In Proceedings of the 2022 Asia-Pacific Microwave Conference (APMC), Yokohama, Japan, 29 November–2 December 2022; pp. 830–832. [Google Scholar]
- Foster, R.M. A reactance theorem. Bell Labs Tech. J. 1924, 3, 259–267. [Google Scholar] [CrossRef]
- Hrabar, S. First ten years of active metamaterial structures with “negative” elements. EPJ Appl. Metamaterials 2018, 5, 1–12. [Google Scholar] [CrossRef]
- van der Pol, B. A new transformation in alternating-current theory with an application to the theory of audition. Radio Eng. Proc. Inst. 1930, 18, 220–230. [Google Scholar] [CrossRef]
- Verman, L. Negative circuit constants. Radio Eng. Proc. Inst. 1931, 19, 676–681. [Google Scholar] [CrossRef]
- Merrill, J.L. Theory of the negative impedance converter. Bell Syst. Tech. J. 1951, 30, 88–109. [Google Scholar] [CrossRef]
- Schwarz, A.F. Negative Resistors and Negative Conductors. Doctoral Dissertation, Delft University of Technology, Delft, The Netherlands, 1969. [Google Scholar]
- Tretyakov, S.A.; Maslovski, S.I. Veselago materials: What is possible and impossible about the dispersion of the constitutive parameters. IEEE Antennas Propag. Mag. 2007, 49, 37–43. [Google Scholar] [CrossRef]
- Linvill, J.G. Transistor negative impedance converters. Proc. IRE 1953, 41, 725–729. [Google Scholar] [CrossRef]
- White, C.R.; Colburn, J.S.; Nagele, R.G. A non-Foster VHF monopole antenna. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 584–587. [Google Scholar] [CrossRef]
- Zhu, N.; Ziolkowski, R.W. Broad-bandwidth, electrically small antenna augmented with an internal non-Foster element. Antennas Wirel. Propag. Lett. 2012, 11, 1116–1120. [Google Scholar]
- Koulouridis, S. Non-Foster circuitry design for antennas. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, Italy, 11–15 April 2011; pp. 237–239. [Google Scholar]
- Fan, Y.; Rajab, K.Z.; Munoz, M.; Hao, Y. Electrically small halfloop antenna design with non-Foster matching networks. In Proceedings of the 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; pp. 126–129. [Google Scholar]
- Tade, O.O.; Gardner, P.; Hall, P.S. Broadband matching of small antennas using negative impedance converters. In Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, Chicago, IL, USA, 8–14 July 2012; pp. 1–2. [Google Scholar]
- Jacob, M.M.; Long, J.; Sievenpiper, D.F. Broadband non-Foster matching of an electrically small loop antenna. In Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, Chicago, IL, USA, 8–14 July 2012; pp. 1–2. [Google Scholar]
- Tade, O.O.; Gardner, P.; Hall, P.S. Negative impedance converters for broadband antenna matching. In Proceedings of the 42nd European Microwave Conference, Amsterdam, The Netherlands, 29 October–1 November 2012; pp. 613–616. [Google Scholar]
- Long, J.; Jacob, M.M.; Sievenpiper, D.F. Broadband fast-wave propagation in a non-Foster circuit loaded waveguide. IEEE Trans. Microw. Theory Tech. 2014, 62, 789–798. [Google Scholar] [CrossRef]
- Gregoire, D.; White, C.; Colburn, J. Wideband artificial magnetic conductors loaded with non-Foster negative inductors. IEEE Ant. Wirel. Prop. Lett. 2011, 10, 1586–1589. [Google Scholar] [CrossRef]
- Ding, Y.; Fusco, V.F. Loading artificial magnetic conductor and artificial magnetic conductor absorber with negative impedance convertor elements. Microw. Opt. Technol. Lett. 2012, 54, 2111–2114. [Google Scholar] [CrossRef]
- Saadat, S.; Adnan, M.; Mosallaei, H.; Afshari, E. Composite metamaterial and metasurface integrated with non-Foster active circuit elements: A bandwidth-enhancement investigation. IEEE Trans. Antennas Propag. 2013, 61, 1210–1218. [Google Scholar] [CrossRef]
- Long, J.; Sievenpiper, D.F. Low-profile and low-dispersion artificial impedance surface in the UHF band based on non-Foster circuit loading. IEEE Trans. Antennas Propag. 2016, 64, 3003–3010. [Google Scholar] [CrossRef]
- Chen, P.Y.; Argyropoulos, C.; Alú, A. Broadening the cloaking bandwidth with non-Foster metasurfaces. Phys. Rev. Lett. 2013, 111, 233001. [Google Scholar] [CrossRef]
- Mou, J.; Shen, Z. Design and experimental demonstration of non-Foster active absorber. IEEE Trans. Ant. Propag. 2017, 65, 696–704. [Google Scholar] [CrossRef]
- Ghadiri, A.; Moez, K. Gain-enhanced distributed amplifier using negative capacitance. Circuits Syst. I Regul. Pap. IEEE Trans. 2010, 57, 2834–2843. [Google Scholar] [CrossRef]
- Akwuruoha, C.N.; Hu, Z. 55 to 59 GHz MMIC non-Foster circuit enabled class-J GaAs pHEMT power amplifier. In Proceedings of the 2018 International Conference on IC Design & Technology (ICICDT), Otranto, Italy, 4–6 June 2018; pp. 149–152. [Google Scholar]
- Akwuruoha, C.N.; Hu, Z. 64 to 70 GHz microstrip non-foster circuit class-J GaAs pHEMT power amplifier. In Proceedings of the 2017 25th Telecommunication Forum, Belgrade, Serbia, 21–22 November 2017; pp. 1–4. [Google Scholar]
- Wu, Q.; Elabd, S.; Quach, T.K.; Mattamana, A.; Dooley, S.R.; McCue, J.; Orlando, P.L.; Creech, G.L.; Khalil, W. A 189 dBc/Hz FOMT wide tuning range Ka-band VCO using tunable negative capacitance and inductance redistribution. In Proceedings of the 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Seattle, WA, USA, 2–4 June 2013; pp. 199–202. [Google Scholar]
- Chen, Y.; Mouthaan, K. Wideband Varactorless LC VCO Using a Tunable Negative-Inductance Cell. IEEE Trans. Circuits Syst. 2010, 57, 2609–2617. [Google Scholar] [CrossRef]
- Yoo, K.; Abdul-Latif, M.; Hand, G.; Sanches-Sinccio, E. Negative impedance circuit and its application to inductorless resonant oscillators. In Proceedings of the International SOC Conference, Seoul, Republic of Korea; 2007; pp. 13–16. [Google Scholar]
- Al Mokdad, S.; Lababidi, R.; Le Roy, M.; Sadek, S.; Perennec, A.; Le Jeune, D. Wide-band active tunable phase shifter using improved non-Foster circuit. In Proceedings of the 2018 25th IEEE International Conference on Electronics, Circuits and Systems, Bordeaux, France, 9–12 December 2018; pp. 449–452. [Google Scholar]
- Kholodnyak, D.V.; Turgaliev, V.M. Quasi-constant-phase networks inspired by metamaterial transmission lines with the non-Foster elements. In Proceedings of the 2012 6th European Conference on Antennas and Propagation, Prague, Czech Republic, 26–30 March 2012; pp. 130–134. [Google Scholar]
- Kholodnyak, D.; Turgaliev, V.; Rusakov, A.; Zemlyakov, K.; Vendik, I. A frequency independent phase inverting all-pass network suitable for a design of ultra-wideband 180° phase shifters. In Proceedings of the 2011 41st European Microwave Conference, Manchester, UK, 10–13 October 2011; pp. 643–646. [Google Scholar]
- Stearns, S.D. Circuit stability theory for non-Foster circuits. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013; pp. 1–3. [Google Scholar]
- Stearns, S.D. Stable band-pass non-Foster circuits. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; pp. 1386–1387. [Google Scholar]
- Tang, Q.; Xin, H. Stability analysis of non-Foster circuit using normalized determinant function. IEEE Trans. Microw. Theory Tech. 2017, 65, 3269–3277. [Google Scholar] [CrossRef]
- Suarez, A.; Ramirez, F. Stability and bifurcation analysis of multielement non-foster networks. IEEE Trans. Microw. Theory Tech. 2018, 66, 1817–1830. [Google Scholar] [CrossRef]
- Stearns, S.D. Incorrect stability criteria for non-Foster circuits. In Proceedings of the IEEE APS/URSI, Chicago, IL, USA, 8–14 July 2012; p. 1. [Google Scholar]
- Suarez, A.; Ramirez, F. Two-level stability analysis of complex circuits. IEEE Trans. Microw. Theory Tech. 2021, 69, 132–146. [Google Scholar] [CrossRef]
- Jimenez-Martin, J.L.; Gonzalez-Posadas, V.; Parra-Cerrada, A.; Blanco-Campo, A.; Ugarte-Munoz, E.; Segovia-Vargas, D. Full conditions for the stability analysis of negative impedance converters. In Proceedings of the 6th European Conference on Antennas and Propagation, Prague, Czech Republic, 26–30 March 2012; pp. 135–138. [Google Scholar]
- Huang, Z.; Yang, H.; Liu, T. Influence analysis of transmission lines on a stable non-Foster-loaded electrically small dipole. Int. J. Antennas Propag. 2019, 2019, 1273574. [Google Scholar] [CrossRef]
- Middlebrook, R.D. Measurement of loop gain in feedback systems. Int. J. Electron. 1975, 38, 485–512. [Google Scholar] [CrossRef]
- Elfrgani, A.M.; Rojas, R.G. Stabilizing non-Foster-based tuning circuits for electrically small antennas. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Memphis, TN, USA, 6–11 July 2014; pp. 464–465. [Google Scholar]
- Brownlie, J.D. On the stability properties of a negative impedance converter. IEEE Trans. Circuit Theory 1966, 13, 98–99. [Google Scholar] [CrossRef]
- Schwarz, A.F. On the stability properties of a negative-immittance converter. IEEE Trans. Circuit Theory 1967, 14, 77. [Google Scholar] [CrossRef]
- Brizic, A.; Hrabar, S.; Zanic, D.; Krois, I. Investigation of Impedance Inverter based on Band-pass non-Foster Negative Capacitor. In Proceedings of the 2019 23rd International Conference on Applied Electromagnetics and Communications (ICECOM), Dubrovnik, Croatia, 30 September–2 October 2019; pp. 1–3. [Google Scholar]
- Buiantuev, B.; Kalmykov, N.; Kholodnyak, D.; Brizić, A.; Vincelj, L.; Hrabar, S. Physically Oriented Design of Negative Capacitors Based on Linvill’s Floating Impedance Converter. IEEE Trans. Microw. Theory Tech. 2022, 70, 139–154. [Google Scholar] [CrossRef]
- Hrabar, S.; Krois, I.; Brizic, A.; Zanic, D.; Lebo, K.; Nozina, D.; Okorn, B. Non-Foster Networks for Tunable and Wideband RF Devices; EOARD/AFRL Final Report for Contract FA8655-20-1-7008; Defense Technical Information Center: Fort Belvoir, VA, USA, 2023. [Google Scholar]
- Buyantuev, B.; Kholodnyak, D. Design of immittance inverters and phase inverters with non-Foster elements. In Proceedings of the 22nd International Microwave and Radar Conference (MIKON), 14–17 May 2018; pp. 29–32. [Google Scholar]
- Zanic, D.; Hrabar, S. Stability-improved Non-Foster Inductance based on Compensated Passive Structure. In Proceedings of the 2022 Sixteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), Siena, Italy, 12–17 September 2022; pp. 193–195. [Google Scholar]
- Okorn, B.; Nožina, D.; Žanic, D.; Hrabar, S. Use of Non-Foster Elements based on Compensated Passive Structure in Tunable Bandpass Filter. In Proceedings of the 2023 International Symposium ELMAR, Zadar, Croatia, 11–13 September 2023; pp. 117–122. [Google Scholar]
- Okorn, B.; Žanić, D.; Nožina, D.; Hrabar, S. Stability Analysis of Active Impedance Inverter based on Loss-compensated Passive Structure. In Proceedings of the 2023 24th International Conference on Applied Electromagnetics and Communications (ICECOM), Dubrovnik, Croatia, 27–29 September 2023; pp. 1–3. [Google Scholar]
- Broomfield, C.; Everard, J. Broadband negative group delay networks for compensation of microwave oscillators and filters. Electron. Lett. 2000, 36, 1931. [Google Scholar] [CrossRef]
- Siddiqui, O.; Erickson, S.; Eleftheriades, G.; Mojahedi, M. Time-domain measurement of negative group delay in negative-refractive-index transmission-line metamaterials. IEEE Trans. Microw. Theory Tech. 2004, 52, 1449. [Google Scholar] [CrossRef]
- Zanic, D.; Brizic, A.; Iakovenko, E.; Kalmykov, N.; Kholodnyak, D.; Hrabar, S. Equivalent Circuit of OCS Negative Capacitor based on Linvill’s Floating NIC. In Proceedings of the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 10–15 July 2022. [Google Scholar]
- Available online: https://python-control.readthedocs.io/en/0.10.1/ (accessed on 27 June 2025).
- Available online: https://www.mathworks.com/products/sysid.html (accessed on 27 June 2025).
- Bode, H.W. Network Analysis and Feedback Amplifier Design. D. Van Nostrand Company: Boston, MA, USA, 1945. [Google Scholar]
- Zanic, D.; Krois, I.; Hrabar, S. How does the Operating Bandwidth of non-Foster Negative Capacitor Affect its Stability properties? AIP Adv. 2024, 14, 055130. [Google Scholar] [CrossRef]
One-Pole Non-Foster Capacitor | Two-Pole Non-Foster Capacitor | Improved Two-Pole Non-Foster Capacitor | Loss-Compensated Non-Foster Capacitor | |
---|---|---|---|---|
dsb = 10% | s = 1.06 × 109 | s = 4.35 × 108 | s = 1.57 × 108 | s = 2.48 × 109 |
dsb = 5% | s = 4.93 × 108 | s = 2.05 × 108 | s = 2.05 × 108 | s = 2.47 × 109 |
dsb = 1% | s = 9.97 × 107 | s = 3.92 × 107 | s = 3.92 × 107 | s = 2.46 × 109 |
S = 1.41 × 10−2 Hz/F | S = 1.28 × 10−2 Hz/F | S = 1.8 × 10−3 Hz/F | S = 9.587 × 10−5 Hz/F |
Loads\Implementations | One-Pole | Two-Pole | Improved Two-Pole | Loss-Compensated |
---|---|---|---|---|
varying resistance | unstable | <20% of the area is stable | <50% of the area is stable | 100% of the area is stable |
variable resistance with a fixed series LC circuit | 100% of the area is stable | <20% of the area is stable | 100% of the area is stable | 100% of the area is stable |
high-Q LC circuit with varying reactance | <50% of the area is stable | <20% of the area is stable | <25% of the area is stable | 100% of the area is stable |
modest-Q LC circuit with varying reactance | <50% of the area is stable | <25% of the area is stable | <50% of the area is stable | 100% of the area is stable |
low-Q LC circuit with varying reactance | <50% of the area is stable | 100% of the area is stable | >90% of the area is stable | 100% of the area is stable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okorn, B.; Hrabar, S. Stability Analysis of Non-Foster Impedance Inverters. Electronics 2025, 14, 2721. https://doi.org/10.3390/electronics14132721
Okorn B, Hrabar S. Stability Analysis of Non-Foster Impedance Inverters. Electronics. 2025; 14(13):2721. https://doi.org/10.3390/electronics14132721
Chicago/Turabian StyleOkorn, Boris, and Silvio Hrabar. 2025. "Stability Analysis of Non-Foster Impedance Inverters" Electronics 14, no. 13: 2721. https://doi.org/10.3390/electronics14132721
APA StyleOkorn, B., & Hrabar, S. (2025). Stability Analysis of Non-Foster Impedance Inverters. Electronics, 14(13), 2721. https://doi.org/10.3390/electronics14132721