Toward High Bit Rate LoRa Transmission via Joint Frequency-Amplitude Modulation
Abstract
1. Introduction
- We design a novel PHY-layer scheme named QR−LoRa, which leverages the joint frequency-amplitude modulation to improve the bit rate of LoRa transmissions.
- We propose a set of simple but effective algorithms to solve the practical challenges during the modulation and demodulation process of the QR−LoRa.
- We verify and evaluate the performance of QR−LoRa through theoretical analysis and real-world environments. The results show that the bit rate gain of QR−LoRa can grow to 2× compared with the existing LoRa device.
2. Preliminaries
2.1. LoRa Primer
2.2. Motivation
2.3. Basic Idea of QR−LoRa
3. QR−LoRa Design
3.1. System Overview
3.2. Joint Frequency-Amplitude Modulation
3.2.1. QR−LoRa Symbols
3.2.2. QR−LoRa Packages
3.3. Joint Frequency-Amplitude Demodulation
3.3.1. Frequency Dimension Demodulation
3.3.2. Amplitude Dimension Demodulation
3.4. Denoising Algorithm
Algorithm 1 Envelope Denoising Algorithm |
|
3.5. Minimum Aided Decoding Algorithm (MADA)
4. Theoretical Analysis
4.1. Data Rate
4.2. QR−LoRa Chirp Energy
4.3. Receiving Sensitivity
5. Evaluations
5.1. Implementation
5.1.1. Software and Hardware Platform
5.1.2. Experiment Setups and Plans
5.2. Evaluation Results
5.2.1. Bit Rate Performance
- a.
- BR vs. SF, when distance = 100 m
- b.
- BR vs. Distance, when SF = 7
- c.
- BR vs. LOS and NLOS, when distance = 100 m, SF = 7
5.2.2. BER Performance
- a.
- BER vs. SF, when distance = 100 m
- b.
- BER vs. Distance, when SF = 7
- c.
- BER vs. LOS and NLOS, when distance = 100 m, SF = 7
5.3. Compatibility with Existing LoRa System
5.4. Comparison with Different Methods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.; Cao, Z. Lora networking techniques for large-scale and long-term iot: A down-to-top survey. ACM Comput. Surv. (CSUR) 2022, 55, 52. [Google Scholar] [CrossRef]
- Sinha, R.S.; Wei, Y.; Hwang, S.H. A survey on LPWA technology: LoRa and NB-IoT. ICT Express 2017, 3, 14–21. [Google Scholar] [CrossRef]
- Vejlgaard, B.; Lauridsen, M.; Nguyen, H.; Kovács, I.Z.; Mogensen, P.; Sorensen, M. Coverage and capacity analysis of sigfox, lora, gprs, and nb-iot. In Proceedings of the 2017 IEEE 85th vehicular technology conference (VTC Spring), Sydney, Australia, 4–7 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. [Google Scholar]
- Liando, J.C.; Gamage, A.; Tengourtius, A.W.; Li, M. Known and unknown facts of LoRa: Experiences from a large-scale measurement study. ACM Trans. Sens. Netw. (TOSN) 2019, 15, 16. [Google Scholar] [CrossRef]
- Guo, X.; Shangguan, L.; He, Y.; Jing, N.; Zhang, J.; Jiang, H.; Liu, Y. Saiyan: Design and Implementation of a Low-power Demodulator for LoRa Backscatter Systems. In Proceedings of the 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), Renton, WA, USA, 4–6 April 2022; pp. 437–451. [Google Scholar]
- Guo, X.; Shangguan, L.; He, Y.; Zhang, J.; Jiang, H.; Siddiqi, A.A.; Liu, Y. Aloba: Rethinking ON-OFF keying modulation for ambient LoRa backscatter. In Proceedings of the 18th Conference on Embedded Networked Sensor Systems, Virtual, 16–19 November 2020; pp. 192–204. [Google Scholar]
- Chen, G.; Dong, W.; Lv, J. Lofi: Enabling 2.4 ghz lora and wifi coexistence by detecting extremely weak signals. In Proceedings of the IEEE INFOCOM 2021—IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–10. [Google Scholar]
- Demeslay, C.; Rostaing, P.; Gautier, R. Theoretical Performance of LoRa System in Multipath and Interference Channels. IEEE Internet Things J. 2021, 9, 6830–6843. [Google Scholar] [CrossRef]
- Gamage, A.; Liando, J.C.; Gu, C.; Tan, R.; Li, M. Lmac: Efficient carrier-sense multiple access for lora. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, London, UK, 21–25 September 2020; pp. 1–13. [Google Scholar]
- Li, C.; Ren, Y.; Tong, S.; Siam, S.I.; Zhang, M.; Wang, J.; Liu, Y.; Cao, Z. ChirpTransformer: Versatile LoRa encoding for low-power wide-area IoT. In Proceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services, Tokyo, Japan, 3–7 June 2024; pp. 479–491. [Google Scholar]
- Li, C.; Guo, X.; Shangguan, L.; Cao, Z.; Jamieson, K. {CurvingLoRa} to boost {LoRa} network throughput via concurrent transmission. In Proceedings of the 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), Renton, WA, USA, 4–6 April 2022; pp. 879–895. [Google Scholar]
- Tong, S.; Xu, Z.; Wang, J. Colora: Enabling multi-packet reception in lora. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 2303–2311. [Google Scholar]
- Elshabrawy, T.; Robert, J. Interleaved chirp spreading LoRa-based modulation. IEEE Internet Things J. 2019, 6, 3855–3863. [Google Scholar] [CrossRef]
- Hanif, M.; Nguyen, H.H. Slope-shift keying LoRa-based modulation. IEEE Internet Things J. 2020, 8, 211–221. [Google Scholar] [CrossRef]
- Bomfin, R.; Chafii, M.; Fettweis, G. A novel modulation for IoT: PSK-LoRa. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Yu, Q.; Wang, H.; Lu, Z.; An, S. Group-based CSS modulation: A novel enhancement to LoRa physical layer. IEEE Wirel. Commun. Lett. 2022, 11, 660–664. [Google Scholar] [CrossRef]
- An, S.; Wang, H.; Sun, Y.; Lu, Z.; Yu, Q. Time domain multiplexed LoRa modulation waveform design for IoT communication. IEEE Commun. Lett. 2022, 26, 838–842. [Google Scholar] [CrossRef]
- Azim, A.W.; Bazzi, A.; Fatima, M.; Shubair, R.; Chafii, M. Dual-mode time domain multiplexed chirp spread spectrum. IEEE Trans. Veh. Technol. 2023, 72, 16086–16097. [Google Scholar] [CrossRef]
- Ma, H.; Fang, Y.; Cai, G.; Han, G.; Li, Y. A New Frequency-Bin-Index LoRa System for High-Data-Rate Transmission: Design and Performance Analysis. IEEE Internet Things J. 2021, 9, 12515–12528. [Google Scholar] [CrossRef]
- Azim, A.W.; Bazzi, A.; Bomfin, R.; Shubair, R.; Chafii, M. Layered chirp spread spectrum modulations for LPWANs. IEEE Trans. Commun. 2023, 72, 1671–1687. [Google Scholar] [CrossRef]
- Zhang, Z. ZChirp: Speeding Up LPWANs by Combining the Chirp with Binary Sequences. In Proceedings of the 2024 21st Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Phoenix, AZ, USA, 2–4 December 2024; pp. 1–9. [Google Scholar]
- Lee, G.; Park, E.; Park, M.; Paek, J.; Bahk, S. BIC-LoRa: Bits in Chirp Shapes to Boost Throughput in LoRa. In Proceedings of the 2024 23rd ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Hong Kong, China, 13–16 May 2024; pp. 237–248. [Google Scholar]
- Vangelista, L.; Jechoux, B.; Canonici, J.X.; Zorzi, M. Golden modulation: A new and effective waveform for massive IoT. IEEE Trans. Commun. 2023, 72, 1938–1948. [Google Scholar] [CrossRef]
- Cao, C.; Zhai, S. A Scheme Using Up-chirp and Down-chirp for LoRa’s bit Synchronization and Carrier Restoration. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 11–14 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 288–292. [Google Scholar]
- Ameloot, T.; Rogier, H.; Moeneclaey, M.; Van Torre, P. LoRa Signal Synchronization and Detection at Extremely Low Signal-to-Noise Ratios. IEEE Internet Things J. 2021, 9, 8869–8882. [Google Scholar] [CrossRef]
- Baddula, M.; Ray, B.; Chowdhury, M. Performance Evaluation of Aloha and CSMA for LoRaWAN Network. In Proceedings of the 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Gold Coast, Australia, 16–18 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Hajimiri, A.; Lee, T.H. A general theory of phase noise in electrical oscillators. IEEE J. Solid-State Circuits 1998, 33, 179–194. [Google Scholar] [CrossRef]
- Tong, S.; Wang, J.; Liu, Y. Combating packet collisions using non-stationary signal scaling in LPWANs. In Proceedings of the Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services, Toronto, ON, Canada, 15–19 June 2020; pp. 234–246. [Google Scholar]
- Friis, H.T. A note on a simple transmission formula. Proc. IRE 1946, 34, 254–256. [Google Scholar] [CrossRef]
- Islam, T.; Mittal, U.; Nimal, A.; Sharma, M. Surface Acoustic Wave (SAW) vapour sensor using 70 MHz SAW oscillator. In Proceedings of the 2012 Sixth International Conference on Sensing Technology (ICST), West Bangal, India, 18–21 December 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 112–114. [Google Scholar]
- Huang, X.; Dolmans, G.; De Groot, H.; Long, J.R. Noise and sensitivity in RF envelope detection receivers. IEEE Trans. Circuits Syst. II Express Briefs 2013, 60, 637–641. [Google Scholar] [CrossRef]
- Hill, C.; Hamza, A.; AlShammary, H.; Buckwalter, J.F. Watt-level, direct RF modulation in CMOS SOI with pulse-encoded transitions for adjacent channel leakage reduction. IEEE Trans. Microw. Theory Tech. 2019, 67, 5315–5328. [Google Scholar] [CrossRef]
Method | LoRa | SSK-LoRa | PSK-LoRa | FBI-LoRa | Ours |
---|---|---|---|---|---|
Bit Rate(kbps) | 13.67 | 15.63 | 21.48 | 31.25 | 31.25 |
BER | |||||
Hardware Cost | $7 | \ | \ | \ | $10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, G.; Zhao, Z.; Zhang, C.; Wu, J.; Jing, N.; Wang, L. Toward High Bit Rate LoRa Transmission via Joint Frequency-Amplitude Modulation. Electronics 2025, 14, 2687. https://doi.org/10.3390/electronics14132687
Tang G, Zhao Z, Zhang C, Wu J, Jing N, Wang L. Toward High Bit Rate LoRa Transmission via Joint Frequency-Amplitude Modulation. Electronics. 2025; 14(13):2687. https://doi.org/10.3390/electronics14132687
Chicago/Turabian StyleTang, Gupeng, Zhidan Zhao, Chengxin Zhang, Jiaqi Wu, Nan Jing, and Lin Wang. 2025. "Toward High Bit Rate LoRa Transmission via Joint Frequency-Amplitude Modulation" Electronics 14, no. 13: 2687. https://doi.org/10.3390/electronics14132687
APA StyleTang, G., Zhao, Z., Zhang, C., Wu, J., Jing, N., & Wang, L. (2025). Toward High Bit Rate LoRa Transmission via Joint Frequency-Amplitude Modulation. Electronics, 14(13), 2687. https://doi.org/10.3390/electronics14132687