A Design of a Leaf-Shaped Biomimetic Flexible Wideband Antenna
Abstract
1. Introduction
2. Materials and Methods
2.1. The Structure of the Antenna
2.2. The Design Principle of the Leaf-Shaped Antenna
3. Results and Discussion
3.1. The Design Steps of the Antenna
3.2. The Simulation Result of the Antenna
3.3. The Measured Results of the Antenna
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, Z.; Wang, F.; Zhang, R.; Niu, R.; Chang, Y.; Ran, X.; Sun, R.; Zhang, G.; Lu, Z. A Flexible Multi-Band Antenna with a Spider Web-like Structure for 4G/5G/GPS/ WIMAX/WLAN Applications. Electronics 2025, 14, 253. [Google Scholar] [CrossRef]
- Zhang, H.; Lee, S. Robot Bionic Eye Motion Posture Control System. Electronics 2023, 12, 698. [Google Scholar] [CrossRef]
- Wang, R.; Sun, J.; Dai, J.S. Design analysis and type synthesis of a petal-inspired space deployable-foldable mechanism. Mech. Mach. Theory 2019, 141, 151–170. [Google Scholar] [CrossRef]
- Niu, H.; Li, H.; Gao, S.; Li, Y.; Wei, X.; Chen, Y.; Yue, W.; Zhou, W.; Shen, G. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 2022, 34, 2202622. [Google Scholar] [CrossRef]
- Li, H.; Xiao, S.; He, L.; Cai, Q.; Liu, G. A Dual-Band 8-Antenna Array Design for 5G/WiFi 5 Metal-Frame Smartphone Applications. Micromachines 2024, 15, 584. [Google Scholar] [CrossRef] [PubMed]
- Zulkifli, F.Y.; Wahdiyat, A.I.; Zufar, A.; Nurhayati, N.; Setijadi, E. Super-Wideband Monopole Printed Antenna with Half-Elliptical-Shaped Patch. Telecom 2024, 5, 760–773. [Google Scholar] [CrossRef]
- Huang, G.-L.; Chang, T.-Y.; Sim, C.-Y.-D. Wideband Eight-Antenna Array Designs for 5G Smartphone Applications. Electronics 2024, 13, 2995. [Google Scholar] [CrossRef]
- Wang, Z.; You, W.; Yang, M.; Nie, W.; Mu, W. Design of MIMO Antenna with Double L-Shaped Structure for 5G NR. Symmetry 2023, 15, 579. [Google Scholar] [CrossRef]
- Colella, R.; Chietera, F.P.; Michel, A.; Muntoni, G.; Casula, G.; Montisci, G.; Catarinucci, L. Electromagnetic characterisation of conductive 3D-Printable filaments for designing fully 3D-Printed antennas. IET Microw. Antennas Propag. 2022, 16, 687–698. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, J.; Shu, X.; Chen, L.; Niu, X.; Wang, Y. A novel evaluation strategy to artificial neural network model based on bionics. J. Bionic Eng. 2022, 19, 224–239. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, J.; Zhang, S.; Han, Z. Bionic structures and materials inspired by plant leaves: A comprehensive review for innovative problem-solving. Prog. Mater. Sci. 2023, 139, 101181. [Google Scholar] [CrossRef]
- Musa, U.; Shah, S.M.; Majid, H.A.; Mahadi, I.A.; Rahim, M.K.A.; Yahya, M.S.; Abidin, Z.Z. Design and Implementation of Active Antennas for IoT-Based Healthcare Monitoring System. IEEE Access 2024, 12, 48453–48471. [Google Scholar] [CrossRef]
- Yassin, M.E.; Hussein, K.F.A.; Abbasi, Q.H.; Imran, M.A.; Mohassieb, S.A. Flexible Antenna with Circular/Linear Polarization for Wideband Biomedical Wireless Communication. Sensors 2023, 23, 5608. [Google Scholar] [CrossRef] [PubMed]
- Masoumi, A.R.; Yusuf, Y.; Behdad, N. Biomimetic antenna arrays based on the directional hearing mechanism of the parasitoid fly Ormia Ochracea. IEEE Trans. Antennas Propag. 2013, 61, 2500–2510. [Google Scholar] [CrossRef]
- You, B.; Ou, Y.; You, J.; Xu, H. A Double-Veined Leaf-Shaped Bionic Meta-Element and Array Loading Antennas for Radiation Beam Control. IEEE Access 2021, 9, 69814–69829. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, Y.; Gong, S.; Hong, T. Application of bionics in antenna radar cross section reduction. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 1275–1278. [Google Scholar] [CrossRef]
- Yu, Z.; Chang, Y.; Niu, R.; Zhang, R.; Wang, F.; Sun, R.; Zhang, G.; Ran, X. A New Koch and Hexagonal Fractal Combined Circular Structure Antenna for 4G/5G/WLAN Applications. Electronics 2025, 14, 237. [Google Scholar] [CrossRef]
- Biswas, B.; Ghatak, R.; Poddar, D.R. A fern fractal leaf inspired wideband antipodal Vivaldi antenna for microwave imaging system. IEEE Trans. Antennas Propag. 2017, 65, 6126–6129. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Z.; Xie, T.; Yu, J.; Wang, L.; Gao, X. A novel binary branch bionic antenna for communication and navigation. Int. J. RF Microw. Comput. Aided Eng. 2022, 32, e23037. [Google Scholar] [CrossRef]
- Rmili, H.; Oueslati, D.; Ben Trad, I.; Floch, J.M.; Dobaie, A.; Mittra, R. Investigation of a random-fractal antenna based on a natural tree-leaf geometry. Int. J. Antennas Propag. 2017, 2017, 2202622. [Google Scholar] [CrossRef]
- Ran, X.; Yu, Z.; Xie, T.; Li, Y.; Wang, X.; Huang, P. A novel dual-band binary branch fractal bionic antenna for mobile terminals. Int. J. Antennas Propag. 2020, 2020, 19. [Google Scholar] [CrossRef]
- Iriqat, S.; Yenikaya, S.; Secmen, M. Dual-Band 2 × 1 Monopole Antenna Array and Its MIMO Configuration for WiMAX, Sub-6 GHz, and Sub-7 GHz Applications. Electronics 2024, 13, 1502. [Google Scholar] [CrossRef]
- Kundu, S. Experimental study of a printed ultra-wideband modified circular monopole antenna. Microw. Opt. Technol. Lett. 2019, 61, 1388–1393. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, Z.N.; Zhou, Y.; Lou, Q.; Wang, J.; Mouthaan, K. Improving radiation pattern roundness of henge-like metaring-loaded monopoles above a finite ground for MIMO systems. Electromagn. Sci. 2024, 2, 1–12. [Google Scholar] [CrossRef]
Performance Indicator | Value |
---|---|
Tensile strength (MPa) | ≥130–180 |
Elongation at break (%) | ≥7.0–8.0 |
Long-term operating temperature (°C) | 240–260 |
Short-term temperature resistance (°C) | 350–400 |
Coefficient of thermal expansion (ppm/°C) | 12–25 |
Parameters | w | l | wf | w1 | l1 | lx | h |
---|---|---|---|---|---|---|---|
values | 40 mm | 14 mm | 1.63 mm | 1.35 mm | 15.2 mm | 43.2 mm | 65 um |
parameters | T | r2 | e1 | e2 | e3 | e4 | L_p |
values | 9 mm | 22 mm | 45° | 36° | 27° | 16° | 50.7 mm |
Antenna | Frequency (GHz) | Max. Gain (dBi) | Profile Height |
---|---|---|---|
[16] | 3.1–10.6 | 5.2 | 0.183λ |
[17] | 2.38–2.90, 3.35–3.85, 5.06–5.80 | 8.8 | 0.01λ |
[19] | 1.60–2.78, 3.34–3.93, 4.83–5.54 | 4.63 | 0.019λ |
[20] | 1–6 (8 frequency points) | 4.8 | 0.006λ |
[21] | 1.7–3.58, 4.8–6 | 4.1 | 0.021λ |
This work | 2.4–7.1 | 5.4 | 0.001λ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, S.; Zhang, L.; Sun, Q.; Tang, B.; Wang, Q. A Design of a Leaf-Shaped Biomimetic Flexible Wideband Antenna. Electronics 2025, 14, 2620. https://doi.org/10.3390/electronics14132620
Tan S, Zhang L, Sun Q, Tang B, Wang Q. A Design of a Leaf-Shaped Biomimetic Flexible Wideband Antenna. Electronics. 2025; 14(13):2620. https://doi.org/10.3390/electronics14132620
Chicago/Turabian StyleTan, Siwei, Linsen Zhang, Qiang Sun, Bo Tang, and Qiyang Wang. 2025. "A Design of a Leaf-Shaped Biomimetic Flexible Wideband Antenna" Electronics 14, no. 13: 2620. https://doi.org/10.3390/electronics14132620
APA StyleTan, S., Zhang, L., Sun, Q., Tang, B., & Wang, Q. (2025). A Design of a Leaf-Shaped Biomimetic Flexible Wideband Antenna. Electronics, 14(13), 2620. https://doi.org/10.3390/electronics14132620