A Quantum Strategy for the Simulation of Large Proteins: From Fragmentation in Small Proteins to Scalability in Complex Systems
Abstract
1. Introduction
2. Related Works
- : the energy of a group assembled or removed during fragmentation (e.g., a capping hydrogen atom to preserve chemical valency);
- : a higher-order many-body interaction correction involving n fragments simultaneously, as in the fragment molecular orbital (FMO) method [16].
- Local qubit tapering. Extending the symmetry-based tapering of Bravyi et al. [21], we identify symmetries within each fragment, removing ∼4–6 logical qubits on average.
- SelectSwap oracle synthesis. The SelectSwap network of Zhu et al. [22] prepares fragment phase oracles at a cost of T gates, where is the number of logical qubits required to represent the diagonal coefficients of the fragment.
- Glucagon (29aa, ) — coefficients; 2679 logical qubits after tapering.
- Oxytocin (9aa, ) — coefficients; 778 qubits.
- Vasopressin (9aa, ) — coefficients; 1641 qubits.
- Angiotensin II (8aa, ) — coefficients; 809 qubits.
3. Methodology
3.1. Fragmentation and Recombination Strategy
- n denotes the total number of fragments generated;
- is the ground-state energy (GSE) of fragment i;
- k is the number of small molecules added or removed;
- is the GSE of each such molecule;
- is the final GSE of the reassembled molecule.
- If a methyl group (CH3) is added to complete valency, we add the energy of a methane molecule as a corrective term.
- If a water molecule is implicitly removed during fragmentation (e.g., in peptide bonds), its reference energy is subtracted.
- If no group is added or removed, no correction is applied.
- Amino acid level: Each amino acid is split into radical and backbone groups. We benchmark the ground-state energy (GSE) and resource estimates (e.g., qubits, Toffoli gates) of the full amino acid against the sum of its fragments, quantifying the reduction factor.
- Peptide/protein level: For representative peptides such as Oxytocin, Angiotensin II, and Glucagon, we compute total energy as the sum of fragment energies plus corrective terms, as expressed in Equation (1). We compare this estimate to the full molecular simulation to evaluate accuracy and resource savings.
3.2. Modeling Based on Experimental Data
- The total number of electrons and molecular orbitals.
- The corresponding number of logical qubits required for simulation.
- The full Hamiltonian encoded as a set of quantum coefficients.
- Ground-state energy estimates derived from quantum mechanical methods
- Additional physicochemical attributes relevant for simulation benchmarking.
3.2.1. Linear Model for Qubits
3.2.2. Log-Linear Robust Model for Qubits
3.2.3. Exponential Model for Hamiltonian Coefficients
3.2.4. Confidence Intervals
3.2.5. Error Metrics
3.3. Estimation of Toffoli Gate Count
3.4. Experimental Validation
4. Results
- Number of coefficients (): The number of Hamiltonian coefficients exhibits exponential growth with the number of electrons, as captured by the exponential model in Equation (11).
- Number of Qubits (): the number of qubits grows moderately linearly with the number of electrons, as described by the linear model in Equation (6).
- Number of Toffoli Gates: While fragmentation occasionally introduces overhead for small amino acids—due to duplicated setup costs and additional reassembly steps—it proves advantageous at the peptide scale, where monolithic encodings become intractable. This trade-off is acceptable, given the preservation of accuracy and the exponential savings in larger systems. However, for small systems, fragmentation maintains extremely low errors, supporting the method’s accuracy and feasibility. This suggests that, while fragmentation introduces a slight overhead in gate count for small systems, it remains a viable strategy for reducing resource requirements in larger systems.
- versus ,
- Toffoli gates versus ,
- Reduction factor versus ,
- Total qubits versus .
- Small peptides: Relative errors of 0.0005–0.0065% in dipeptides (e.g., Gly-Gly, Pro-Gly, Gly-Ala). This confirms the high accuracy of our fragmentation strategy for small systems.
- Intermediate peptides: Some (e.g., Aspartame and Phe-Ile) exhibit slightly higher errors (up to 0.065%), confirming again the accuracy of the strategy.
- Large systems: In molecules with hundreds of electrons (e.g., Angiotensin II and IV, Oxytocin, Glucagon), the relative error increases (between 2 and 3%), highlighting the need for further optimization strategies, even though the errors remain within acceptable limits for practical applications.
Experimental Validation
5. Discussion
6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Source Code
Appendix B. T-Gate Count from the Big-O Bound
Appendix C. Per-Fragment Coefficient Determination
- , the number of Hamiltonian terms (input).
- , the required qubit-index width.
Appendix D. Regression Model Analysis for Qubits
Appendix D.1. Model Formulation
- Small:
- Medium:
- Large:
Appendix D.2. Evaluation Metrics
Appendix D.3. Confidence Interval (95%) via Delta Method
References
- Bryce, R.A. What Next for Quantum Mechanics in Structure-Based Drug Discovery? Methods Mol. Biol. 2020, 2114, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Baiardi, A.; Christandl, M.; Reiher, M. Quantum Computing for Molecular Biology. Chembiochem 2023, 24, e202300120. [Google Scholar] [CrossRef]
- Sala, L.C.; Atchade-Adelemou, P. Efficient Protein Ground State Energy Computation via Fragmentation and Reassembly. arXiv 2025, arXiv:2501.03766. [Google Scholar]
- Li, S.; Li, W.; Jiang, Y. Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules. J. Phys. Chem. A 2007, 111, 2193–2199. [Google Scholar] [CrossRef] [PubMed]
- Deev, V.; Collins, M.A. Approximate ab initio energies by systematic molecular fragmentation. J. Chem. Phys. 2005, 122, 154102. [Google Scholar] [CrossRef]
- Bettens, R.P.A.; Lee, A.M. Accurately reproducing ab initio electrostatic potentials with multipoles and fragmentation. J. Phys. Chem. A 2006, 110, 8777. [Google Scholar] [CrossRef]
- Atchade-Adelomou, P. Quantum algorithms for solving hard constrained optimisation problems. arXiv 2022, arXiv:2202.13125. [Google Scholar]
- Reiher, M.; Wiebe, N.; Svore, K.M.; Wecker, D.; Troyer, M. Elucidating reaction mechanisms on quantum computers. Proc. Natl. Acad. Sci. USA 2017, 114, 7555–7560. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Density functional theory (DFT). Phys. Rev 1964, 136, B864. [Google Scholar] [CrossRef]
- Evangelisti, S.; Bendazzoli, G.L.; Gagliardi, L. Complete active-space configuration interaction with optimized orbitals: Application to Li2. Int. J. Quantum Chem. 1995, 55, 277–280. [Google Scholar] [CrossRef]
- McArdle, S.; Endo, S.; Aspuru-Guzik, A.; Benjamin, S.C.; Yuan, X. Quantum computational chemistry. Rev. Mod. Phys. 2020, 92, 015003. [Google Scholar] [CrossRef]
- Yang, P.J.; Sugiyama, M.; Tsuda, K.; Yanai, T. Artificial neural networks applied as molecular wave function solvers. J. Chem. Theory Comput. 2020, 16, 3513–3529. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Romero, J.; Olson, J.P.; Degroote, M.; Johnson, P.D.; Kieferová, M.; Kivlichan, I.D.; Menke, T.; Peropadre, B.; Sawaya, N.P.; et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 2019, 119, 10856–10915. [Google Scholar] [CrossRef]
- Wecker, D.; Bauer, B.; Clark, B.K.; Hastings, M.B.; Troyer, M. Gate-count estimates for performing quantum chemistry on small quantum computers. Phys. Rev. A 2014, 90, 022305. [Google Scholar] [CrossRef]
- Low, G.H.; Kliuchnikov, V.; Schaeffer, L. Trading T gates for dirty qubits in state preparation and unitary synthesis. Quantum 2024, 8, 1375. [Google Scholar] [CrossRef]
- Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayasi, M. Fragment Molecular Orbital Method: An Approximate Computational Method for Large Molecules. Chem. Phys. Lett. 1999, 313, 701–706. [Google Scholar] [CrossRef]
- Morokuma, M.; collaborators. ONIOM: A Multilayered Integrated MO + MM Method. J. Mol. Struct. 1999, 461–462, 1–21. [Google Scholar]
- ApSimon, J.; J. Bearpark, R. Adaptive QM/MM Methods for Chemical Reaction Dynamics. WIREs Comput. Mol. Sci. 2023, 13, e1618. [Google Scholar]
- Bowling, P.E.; Broderick, D.R.; Herbert, J.M. Convergent Protocols for Computing Protein–Ligand Interaction Energies Using Fragment-Based Quantum Chemistry. J. Chem. Theory Comput. 2023, 19, 3656–3670. [Google Scholar] [CrossRef]
- Vornweg, J.R.; Wolter, M.; Jacob, C.R. A simple and consistent quantum-chemical fragmentation scheme for proteins that includes two-body contributions. J. Chem. Theory Comput. 2022, 18, 4516–4527. [Google Scholar] [CrossRef]
- Bravyi, S.; Gambetta, J.M.; Mezzacapo, A.; Temme, K. Tapering off qubits to simulate fermionic Hamiltonians. arXiv 2017. [Google Scholar] [CrossRef]
- Zhu, S.; Sundaram, A.; Low, G.H. Unified architecture for a quantum lookup table. arXiv 2024, arXiv:2406.18030. [Google Scholar]
- Fomichev, S.; Hejazi, K.; Zini, M.S.; Kiser, M.; Fraxanet, J.; Casares, P.A.M.; Delgado, A.; Huh, J.; Voigt, A.C.; Mueller, J.E.; et al. Initial state preparation for quantum chemistry on quantum computers. PRX Quantum 2024, 5, 040339. [Google Scholar] [CrossRef]
- Gosset, D.; Kothari, R.; Wu, K. Quantum state preparation with optimal T-count. arXiv 2024, arXiv:2411.04790. [Google Scholar]
- Carrera Vazquez, A.; Woerner, S. Efficient state preparation for quantum amplitude estimation. Phys. Rev. Appl. 2021, 15, 034027. [Google Scholar] [CrossRef]
- von Burg, V.; Low, G.H.; Häner, T.; Steiger, D.S.; Reiher, M.; Roetteler, M.; Troyer, M. Quantum computing enhanced computational catalysis. Phys. Rev. Res. 2021, 3. [Google Scholar] [CrossRef]
- Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 2005, 77, 259–315. [Google Scholar] [CrossRef]
- Perez-Garcia, D.; Verstraete, F.; Wolf, M.M.; Cirac, J.I. Matrix product state representations. arXiv 2006. [Google Scholar] [CrossRef]
- Orús, R.; Mugel, S.; Lizaso, E. Tensor Networks for Complex Quantum Systems. Nat. Rev. Phys. 2019, 1, 538–550. [Google Scholar] [CrossRef]
- Chan, G.K.L.; Zgid, D. The Density Matrix Renormalization Group in Quantum Chemistry. Annu. Rep. Comput. Chem. 2009, 5, 149–162. [Google Scholar]
- Møller, C.; Plesset, M.S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618–622. [Google Scholar] [CrossRef]
- Zou, H.; Magnusson, E.; Brunander, H.; Dobrautz, W.; Rahm, M. Multireference error mitigation for quantum computation of chemistry. arXiv 2025. [Google Scholar] [CrossRef]
- Sala, L.C.; Atchade-Adelomou, P. QMProt: A Comprehensive Dataset of Quantum Properties for Proteins. arXiv 2025, arXiv:2505.08956. [Google Scholar]
- Huber, P.J. Robust estimation of a location parameter. In Breakthroughs in Statistics: Methodology and Distribution; Springer: Berlin/Heidelberg, Germany, 1992; pp. 492–518. [Google Scholar]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Indag. Math. 1950, 12, 173. [Google Scholar]
- Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef]
- PennyLaneAI Development Team. test_qrom_state_prep.py: QROM State Preparation Test. Available online: https://github.com/PennyLaneAI/pennylane/blob/qrom_state_prep/tests/templates/test_state_preparations/test_qrom_state_prep.py (accessed on 17 June 2025).
- PennyLaneAI Development Team. test_resource_qubitization.py: Resource Qubitization Test. 2025. Available online: https://github.com/PennyLaneAI/pennylane/blob/5fc5d02308d25831594ecb41e4acc6f74ce2da30/pennylane/labs/tests/resource_estimation/templates/test_resource_qubitization.py (accessed on 17 June 2025).
- Xanadu Quantum Technologies Inc. qml.labs.resource_estimation—PennyLane 0.41.1 Documentation. 2024. Available online: https://docs.pennylane.ai/en/stable/code/api/pennylane.labs.resource_estimation.html (accessed on 16 June 2025).
- contributors, P. pennylane.labs.resource_estimation: Resource Estimation Module. 2025. Available online: https://github.com/PennyLaneAI/pennylane/tree/5fc5d02308d25831594ecb41e4acc6f74ce2da30/pennylane/labs (accessed on 16 June 2025).
- Kitaev, A.Y. Quantum measurements and the Abelian stabilizer problem. arXiv 1995. [Google Scholar] [CrossRef]
- Amy, M.; Maslov, D.; Mosca, M.; Roetteler, M. A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2013, 32, 818–830. [Google Scholar] [CrossRef]
- Ross, N.J.; Selinger, P. Optimal ancilla-free Clifford+ T approximation of z-rotations. arXiv 2014, arXiv:1403.2975. [Google Scholar]
Peptides | Electrons | Orbitals | GT | Em | %RE |
---|---|---|---|---|---|
Gly-Gly | 70 | 53 | |||
Gly-Ala | 78 | 60 | |||
Glu-Gly | 108 | 82 | |||
Ser-Cys | 110 | 81 | |||
Carnosine (Ala-His) | 120 | 94 | |||
Gly-Ser | 86 | 65 | |||
Pro-Gly | 92 | 72 | |||
Cystine (Cys-Cys) | 126 | 90 | |||
Leu-Thr | 126 | 100 | |||
Gly-Val-Ala | 132 | 104 | |||
Thr-Lys | 134 | 106 | |||
Val-Ala-Ser | 148 | 116 | |||
Phe-Ile | 150 | 122 | |||
Ser-Gly-Glu | 154 | 117 | |||
Aspartame (Asp-Phe) | 156 | 123 | |||
Tyr-Asp | 156 | 121 | |||
Glutathione (Cys-Glu-Gly) | 162 | 121 | |||
Arg-Met | 164 | 127 | |||
Val-Asp-Ser | 170 | 131 | |||
Gly-His-Lys | 182 | 144 | |||
Trp-His | 180 | 144 | |||
Tyr-Arg | 180 | 143 | |||
His-Arg-Val | 220 | 175 | |||
Tuftsin (Thr-Lys-Pro-Arg) | 270 | 215 | |||
Methionine-enkephalin (Tyr-Gly-Gly-Phe-Met) | 304 | 239 | |||
Leucine-enkephalin (Tyr-Gly-Gly-Phe-Leu) | 296 | 237 | |||
Oxytocin (Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu–Gly) | 536 | 419 | |||
Opiorphin (Gln-Arg-Phe-Ser-Arg) | 558 | 446 | |||
Bradykinin (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) | 566 | 453 | |||
Neurotensin (Glu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu) | 896 | 716 | |||
Gastrin-14 (Trp-Leu-Glu-Glu-Glu-Glu-Glu-Ala-Tyr-Gly-Trp-Met-Asp-Phe) | 970 | 763 | |||
Angiotensin IV (Val-Tyr-Ile-His-Pro-Phe) | 414 | 334 | |||
Angiotensin II (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe) | 558 | 446 | |||
Angiotensin I (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu) | 692 | 554 | |||
Glucagon (His-Ser-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Tyr- | |||||
Leu-Asp-Ser-Arg-Arg-Ala-Gln-Asp-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr) | 1852 | 1459 |
Molecules | Ver. | # Coeffs. | Toffoli | Red. (Toffoli) | Electrons | Red. (Coeff.) |
---|---|---|---|---|---|---|
Alanine | Orig. | - | - | |||
R_ala + Base Structures | Prop. | – | ||||
Histidine | Orig. | - | - | |||
R_his + Base Structures | Prop. | – | ||||
Leucine | Orig. | - | - | |||
R_leu + Base Structures | Prop. | – | ||||
Isoleucine | Orig. | - | - | |||
R_ile + Base Structures | Prop. | – | ||||
Lysine | Orig. | - | - | |||
R_lys + Base Structures | Prop. | – | ||||
Methionine | Orig. | - | - | |||
R_met + Base Structures | Prop. | – | ||||
Phenylalanine | Orig. | - | - | |||
R_phe + Base Structures | Prop. | – | ||||
Threonine | Orig. | - | - | |||
R_thr + Base Structures | Prop. | – | ||||
Tryptophan | Orig. | - | - | |||
R_trp + Base Structures | Prop. | – | ||||
Valine | Orig. | - | - | |||
R_val + Base Structures | Prop. | – | ||||
Arginine | Orig. | - | - | |||
R_arg + Base Structures | Prop. | – | ||||
Cysteine | Orig. | - | - | |||
R_cys + Base Structures | Prop. | – | ||||
Glutamine | Orig. | - | - | |||
R_gln + Base Structures | Prop. | – | ||||
Asparagine | Orig. | - | - | |||
R_asn + Base Structures | Prop. | – | ||||
Tyrosine | Orig. | - | - | |||
R_tyr + Base Structures | Prop. | – | ||||
Serine | Orig. | - | - | |||
R_ser + Base Structures | Prop. | – | ||||
Glycine | Orig. | - | - | |||
R_gly + Base Structures | Prop. | – | ||||
Aspartic_Acid | Orig. | - | - | |||
R_asp + Base Structures | Prop. | – | ||||
Glutamic_Acid | Orig. | - | - | |||
R_glu + Base Structures | Prop. | – | ||||
Proline | Orig. | - | - | |||
R_pro + Base Structures | Prop. | – | ||||
Glucagon | Orig. | - | - | |||
Amino acids - Glucagon | Prop. | – | ||||
Oxytocin | Orig. | - | - | |||
Amino acids - Oxytocin | Prop. | – | ||||
Vasopressin | Orig. | - | - | |||
Amino acids - Vasopressin | Prop. | – | ||||
Angiotensin II | Orig. | - | - | |||
Amino acids - Angiotensin II | Prop. | – | ||||
Kyotorphin | Orig. | - | - | |||
Amino acids - Kyotorphin | Prop. | – | ||||
Methionine-enkephalin | Orig. | - | - | |||
Amino acids - Methionine-enkephalin | Prop. | – | ||||
Leucine-enkephalin | Orig. | - | - | |||
Amino acids - Leucine-enkephalin | Prop. | – | ||||
Tuftsin | Orig. | - | - | |||
Amino acids - Tuftsin | Prop. | – | ||||
Opiorphin | Orig. | - | - | |||
Amino acids - Opiorphin | Prop. | – | ||||
Angiotensin IV | Orig. | - | - | |||
Amino acids - Angiotensin IV | Prop. | – | ||||
Neurotensin | Orig. | - | - | |||
Amino acids - Neurotensin | Prop. | – | ||||
Bradykinin | Orig. | - | - | |||
Amino acids - Bradykinin | Prop. | – | ||||
Angiotensin I | Orig. | - | - | |||
Amino acids - Angiotensin I | Prop. | – | ||||
Gastrin-14 | Orig. | - | - | |||
Amino acids - Gastrin-14 | Prop. | – | ||||
GLU_CYS_GLY | Orig. | - | - | |||
Amino acids - GLU_CYS_GLY | Prop. | – | ||||
ALA_HIS | Orig. | - | - | |||
Amino acids - ALA_HIS | Prop. | – | ||||
PRO_GLY_PRO | Orig. | - | - | |||
Amino acids - PRO_GLY_PRO | Prop. | – | ||||
GLY_HIS_LYS | Orig. | - | - | |||
Amino acids - GLY_HIS_LYS | Prop. | – |
Segment | Model | R2 Total | R2 CV | MAE (log) | RMSE (log) | Std Dev (log) | CV (%) |
---|---|---|---|---|---|---|---|
Small (≤150) | Huber | 0.922 | 0.807 | 0.057 | 0.081 | 0.288 | 6.059 |
Small (≤150) | Huber | 0.925 | 0.824 | 0.057 | 0.079 | 0.288 | 6.059 |
Small (≤150) | Huber | 0.929 | 0.828 | 0.056 | 0.076 | 0.288 | 6.059 |
Small (≤150) | Huber | 0.931 | 0.831 | 0.057 | 0.076 | 0.288 | 6.059 |
Small (≤150) | Theil–Sen | 0.927 | 0.806 | 0.056 | 0.078 | 0.288 | 6.059 |
Medium (151–500) | Huber | 0.978 | – | 0.039 | 0.051 | 0.347 | 5.741 |
Medium (151–500) | Huber | 0.983 | – | 0.042 | 0.045 | 0.347 | 5.741 |
Medium (151–500) | Huber | 0.983 | – | 0.042 | 0.046 | 0.347 | 5.741 |
Medium (151–500) | Huber | 0.983 | – | 0.042 | 0.046 | 0.347 | 5.741 |
Medium (151–500) | Theil–Sen | 0.977 | – | 0.041 | 0.052 | 0.347 | 5.741 |
Large (>500) | Huber | 0.946 | – | 0.078 | 0.093 | 0.398 | 5.591 |
Large (>500) | Huber | 0.948 | – | 0.078 | 0.091 | 0.398 | 5.591 |
Large (>500) | Huber | 0.956 | – | 0.075 | 0.083 | 0.398 | 5.591 |
Large (>500) | Huber | 0.956 | – | 0.075 | 0.083 | 0.398 | 5.591 |
Large (>500) | Theil–Sen | 0.912 | – | 0.071 | 0.118 | 0.398 | 5.591 |
Molecules | Ver. | # Coeffs | Toffoli | Toffoli * | (%) | (%) | (%) | ||
---|---|---|---|---|---|---|---|---|---|
Alanine | Orig. | ||||||||
R_ala + Base Structures | Prop. | ||||||||
Histidine | Orig. | ||||||||
R_his + Base Structures | Prop. | ||||||||
Leucine | Orig. | ||||||||
R_leu + Base Structures | Prop. | ||||||||
Isoleucine | Orig. | ||||||||
R_ile + Base Structures | Prop. | ||||||||
Lysine | Orig. | ||||||||
R_lys + Base Structures | Prop. | ||||||||
Methionine | Orig. | ||||||||
R_met + Base Structures | Prop. | ||||||||
Mhenylalanine | Orig. | ||||||||
R_phe + Base Structures | Prop. | ||||||||
Threonine | Orig. | ||||||||
R_thr + Base Structures | Prop. | ||||||||
Tryptophan | Orig. | ||||||||
R_trp + Base Structures | Prop. | ||||||||
Valine | Orig. | ||||||||
R_val + Base Structures | Prop. | ||||||||
Arginine | Orig. | ||||||||
R_arg + Base Structures | Prop. | ||||||||
Cysteine | Orig. | ||||||||
R_cys + Base Structures | Prop. | ||||||||
Glutamine | Orig. | ||||||||
R_gln + Base Structures | Prop. | ||||||||
Asparagine | Orig. | ||||||||
R_asn + Base Structures | Prop. | ||||||||
Tyrosine | Orig. | ||||||||
R_tyr + Base Structures | Prop. | ||||||||
Serine | Orig. | ||||||||
R_ser + Base Structures | Prop. | ||||||||
Glycine | Orig. | ||||||||
R_gly + Base Structures | Prop. | ||||||||
Aspartic_acid | Orig. | ||||||||
R_asp + Base Structures | Prop. | ||||||||
Glutamic_acid | Orig. | ||||||||
R_glu + Base Structures | Prop. | ||||||||
Proline | Orig. | ||||||||
R_pro + Base Structures | Prop. | ||||||||
Glucagon | Orig. | ||||||||
Amino acids – Glucagon | Prop. | ||||||||
Oxytocin | Orig. | ||||||||
Amino acids – Oxytocin | Prop. | ||||||||
Vasopressin | Orig. | ||||||||
Amino acids – Vasopressin | Prop. | ||||||||
Angiotensin II | Orig. | ||||||||
Amino acids – Angiotensin II | Prop. | ||||||||
Kyotorphin | Orig. | ||||||||
Amino acids – Kyotorphin | Prop. | ||||||||
Metionina encefalina | Orig. | ||||||||
Amino acids – Metionina encefalina | Prop. | ||||||||
Leucina encefalina | Orig. | ||||||||
Amino acids – Leucina encefalina | Prop. | ||||||||
Tuftsin | Orig. | ||||||||
Amino acids – Tuftsin | Prop. | ||||||||
Opiorfina | Orig. | ||||||||
Amino acids – Opiorfina | Prop. | ||||||||
Angiotensina IV | Orig. | ||||||||
Amino acids – Angiotensina IV | Prop. | ||||||||
Neurotensina | Orig. | ||||||||
Amino acids – Neurotensina | Prop. | ||||||||
Bradicinina | Orig. | ||||||||
Amino acids – Bradicinina | Prop. | ||||||||
Angiotensina I | Orig. | ||||||||
Amino acids – Angiotensina I | Prop. | ||||||||
Gastrin-14 | Orig. | ||||||||
Amino acids – Gastrin-14 | Prop. | ||||||||
GLU_CYS_GLY | Orig. | ||||||||
Amino acids – GLU_CYS_GLY | Prop. | ||||||||
ALA_HIS | Orig. | ||||||||
Amino acids – ALA_HIS | Prop. | ||||||||
PRO_GLY_PRO | Orig. | ||||||||
Amino acids – PRO_GLY_PRO | Prop. | ||||||||
GLY_HIS_LYS | Orig. | ||||||||
Amino acids – GLY_HIS_LYS | Prop. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atchade-Adelomou, P.; Coronas Sala, L. A Quantum Strategy for the Simulation of Large Proteins: From Fragmentation in Small Proteins to Scalability in Complex Systems. Electronics 2025, 14, 2601. https://doi.org/10.3390/electronics14132601
Atchade-Adelomou P, Coronas Sala L. A Quantum Strategy for the Simulation of Large Proteins: From Fragmentation in Small Proteins to Scalability in Complex Systems. Electronics. 2025; 14(13):2601. https://doi.org/10.3390/electronics14132601
Chicago/Turabian StyleAtchade-Adelomou, Parfait, and Laia Coronas Sala. 2025. "A Quantum Strategy for the Simulation of Large Proteins: From Fragmentation in Small Proteins to Scalability in Complex Systems" Electronics 14, no. 13: 2601. https://doi.org/10.3390/electronics14132601
APA StyleAtchade-Adelomou, P., & Coronas Sala, L. (2025). A Quantum Strategy for the Simulation of Large Proteins: From Fragmentation in Small Proteins to Scalability in Complex Systems. Electronics, 14(13), 2601. https://doi.org/10.3390/electronics14132601