Reconfigurable Wideband Bandpass Filter Using Stepped Impedance Resonator Based on Liquid Crystals
Abstract
1. Introduction
2. Materials
3. Methods
3.1. Fundamentals of Electric Field-Induced Nematic Liquid Crystals
3.2. Multilayer Microstrip Line Filled with Liquid Crystals (Isotropic Assumed)
3.3. Stepped Impedance Resonator with Capacitive-Ended Coupled Lines
4. Results
4.1. Proposed Structure
4.2. Simulation and Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Federal Communications Commission. Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems. In First Report and Order; ET Docket: Washington, DC, USA, 2002; pp. 98–153. [Google Scholar]
- Sanchez-Renedo, M.; Gomez-Garcia, R.; Alonso, J.I.; Briso-Rodriguez, C. Tunable combline filter with continuous control of center frequency and bandwidth. IEEE Trans. Microw. Theory Techn. 2005, 53, 191–199. [Google Scholar] [CrossRef]
- Adhikari, S.; Ghiotto, A.; Wu, K. Simultaneous electric and magnetic two-dimensionally tuned parameter-agile SIW devices. IEEE Trans. Microw. Theory Techn. 2013, 61, 423–435. [Google Scholar] [CrossRef]
- Polat, E.; Kamrath, F.; Matic, S.; Tesmer, H.; Jiménez-Sáez, A.; Wang, D.; Maune, H.; Höft, M.; Jakoby, R. Novel hybrid electric/magnetic bias concept for tunable liquid crystal based filter. IEEE J. Microw. 2022, 2, 490–495. [Google Scholar] [CrossRef]
- Bi, X.K.; Cheng, T.; Cheong, P.; Ho, S.K.; Tam, K.W. Design of dual-band bandpass filters with fixed and reconfigurable bandwidths based on terminated cross-shaped resonators. IEEE Trans. Circuits Syst. II Express Briefs 2018, 66, 317–321. [Google Scholar] [CrossRef]
- Cheng, T.; Tam, K.-W. A wideband bandpass filter with reconfigurable bandwidth based on cross-shaped resonator. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 909–911. [Google Scholar] [CrossRef]
- Miller, A.; Hong, J.-S. Wideband bandpass filter with multiple reconfigurable bandwidth states. In Proceedings of the 40th European Microwave Conference (EuMC), Paris, France, 26–28 September 2010; pp. 1273–1276. [Google Scholar]
- Bandyopadhyay, A.; Sarkar, P.; Ghatak, R. A bandwidth reconfigurable bandpass filter for ultrawideband and wideband applications. IEEE Trans. Circuits Syst. II Exp. Briefs 2022, 69, 2747–2751. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, T.; Chi, P.-L.; Zhang, X.; Xu, R. A 10.23–15.7-GHz varactor-tuned microstrip bandpass filter with highly flexible reconfigurability. IEEE Trans. Microw. Theory Techn. 2021, 69, 4499–4509. [Google Scholar] [CrossRef]
- Dey, S.; Koul, S.K. Reliable, compact, and tunable MEMS bandpass filter using arrays of series and shunt bridges for 28-GHz 5G applications. IEEE Trans. Microw. Theory Techn. 2021, 69, 75–88. [Google Scholar] [CrossRef]
- Cai, L.; Xu, H.; Chu, D. Compact liquid crystal based tunable band-stop filter with an ultra-wide stopband by using wave interference technique. Int. J. Antennas Propag. 2017, 2017, 9670965. [Google Scholar] [CrossRef]
- Jiang, D.; Liu, Y.; Li, X.; Wang, G.; Zheng, Z. Tunable microwave bandpass filters with complementary split ring resonator and liquid crystal materials. IEEE Access 2019, 7, 126265–126272. [Google Scholar] [CrossRef]
- Kamrath, F.; Polat, E.; Matic, S.; Schuster, C.; Miek, D.; Tesmer, H.; Boe, P.; Wang, D.; Jakoby, R.; Maune, H.; et al. Bandwidth and center frequency reconfigurable waveguide filter based on liquid crystal technology. IEEE J. Microw. 2021, 2, 134–144. [Google Scholar] [CrossRef]
- Ma, J.-S.; Choi, J.-Y.; Oh, S.-W.; Kim, W.-S. Liquid-crystal-based floating-electrode-free coplanar waveguide phase shifter with an additional liquid-crystal layer for 28-GHz applications. J. Phys. D Appl. Phys. 2021, 55, 095106. [Google Scholar] [CrossRef]
- Kim, D.; Kim, K.; Saeed, M.H.; Choi, S.; Na, J.-H. Fast reconfigurable phase shifter based on a chiral liquid crystal configuration. IEEE Access 2023, 11, 60817–60826. [Google Scholar] [CrossRef]
- Shin, H.-J.; Ma, J.-S.; Choi, J.-Y.; Kim, W.-S. Phase shifting enhancement of a substrate-integrated waveguide phase shifter based on liquid crystal. Appl. Sci. 2023, 13, 2504. [Google Scholar] [CrossRef]
- Kim, S.; Chae, C.-B.; Min, B.-W. A low-loss defected-ground-structure based phase shifter and antenna on a 4-μm thin liquid crystal layer. IEEE Access 2023, 11, 34952–34957. [Google Scholar] [CrossRef]
- Shu, J.; Zhang, Y. Tailoring meta-liquid crystal for larger tunability. EMScience 2023, 1, 1–10. [Google Scholar] [CrossRef]
- Lee, C.; Park, J.; Chi, Y.-E.; Yoo, Y.; Park, S.-O.; Yoon, D.K. Ultralow-voltage frequency tunning of liquid crystal-based GHz antenna via nanoscratching method. Adv. Mater. Technol. 2024, 9, 2301859. [Google Scholar] [CrossRef]
- Kim, D.; Choi, J.; Youn, Y.; Chang, S.; Lee, C.; Kim, W.; Hong, W. Characterization of nematic liquid crystal dielectric properties using complementary FSSs featuring electrically small cell gaps across a wide sub-THz range. IEEE Trans. Antennas Propag. 2023, 72, 2019–2024. [Google Scholar] [CrossRef]
- Li, X.; Sao, H.; Fujikake, H.; Chen, Q. Development of two-dimensional steerable reflectarray with liquid crystal for reconfigurable intelligent surface applications. IEEE Trans. Antennas Propag. 2024, 72, 2108–2123. [Google Scholar] [CrossRef]
- Pandit, S.; Kim, D.; Youn, Y.; An, D.; Hong, W. Frequency-tunable absorber using liquid crystal at 140 GHz. IEEE Trans. Antennas Propag. 2024, 23, 1119–1123. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, L.; Zhou, S.; Li, L.; McGrath, S. A wideband millimeter-wave tunable filter based on periodic square spiral structure and liquid crystal material. In Proceedings of the 31st Irish Signals and Systems Conference (ISSC), Cork, Ireland, 11–12 June 2020; pp. 1–4. [Google Scholar]
- Jiang, D.; Li, X.; Fu, Z.; Wang, G.; Zheng, Z.; Zhang, T.; Wang, W.-Q. Millimeter-wave broadband tunable band-pass filter based on liquid crystal materials. IEEE Access 2020, 8, 1339–1346. [Google Scholar] [CrossRef]
- Makimoto, M.; Yamashita, S. Bandpass filters using parallel coupled stripline stepped impedance resonators. IEEE Trans. Microw. Theory Techn. 1980, 28, 1413–1417. [Google Scholar] [CrossRef]
- Cai, P.; Ma, Z.; Guan, X.; Kobayashi, Y.; Anada, T.; Hagiwara, G. A novel compact ultra-wideband bandpass filter using a microstrip stepped-impedance four-modes resonator. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest (MTT-S IMS), Honolulu, HI, USA, 3–8 June 2007; pp. 751–754. [Google Scholar]
- Chu, Q.-X.; Tian, X.-K. Design of UWB bandpass filter using stepped-impedance stub-loaded resonator. IEEE Microw. Compon. Lett. 2010, 20, 501–503. [Google Scholar] [CrossRef]
- Worapishet, A.; Srisathit, K.; Surakampontorn, W. Stepped-impedance coupled resonators for implementation of parallel coupled microstrip filters with spurious band suppression. IEEE Trans. Microw. Theory Techn. 2012, 60, 1540–1548. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Liu, Y.; Jiang, D. Liquid crystal based SIR bandpass filter for millimeter wave application. In Proceedings of the 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT), Dublin, Ireland, 5–7 September 2018; pp. 1–3. [Google Scholar]
- Fan, X.; Li, R.; Yan, J.; Fang, Y.; Yu, Y. Electrically tunable liquid crystal coplanar waveguide stepped-impedance resonator. Front. Inf. Technol. Electron. Eng. 2021, 22, 1270–1276. [Google Scholar] [CrossRef]
- Karabey, O.H.; Gaebler, A.; Strunck, S.; Jakoby, R. A 2-D electronically steered phased-array antenna with 2 × 2 elements in LC display technology. IEEE Trans. Microw. Theory Techn. 2012, 60, 1297–1306. [Google Scholar] [CrossRef]
- Wang, D.; Polat, E.; Schuster, C.; Tesmer, H.; Rehder, G.P.; Serrano, A.L.C.; Gomes, L.G.; Ferrari, P.; Maune, H.; Jakoby, R.; et al. Fast and miniaturized phase shifter with excellent figure of merit based on liquid crystal and nanowire-filled membrane technologies. IEEE J. Microw. 2022, 2, 174–184. [Google Scholar] [CrossRef]
- Guirado, R.; Perez-Palomino, G.; Ferreras, M.; Carrasco, E.; Caño-García, M. Dynamic modelling of liquid crystal-based metasurfaces and its application to reducing reconfigurability times. IEEE Trans. Antennas Propag. 2022, 70, 11847–11857. [Google Scholar] [CrossRef]
- Yang, D.K.; Wu, S.T. Fundamentals of Liquid Crystal Devices; Wiley: New York, NY, USA, 2006. [Google Scholar]
- Svacina, J. A simple quasi-static determination of basic parameters of multilayer microstrip and coplanar waveguide. IEEE Microw. Guid. Wave Lett. 1992, 2, 385–387. [Google Scholar] [CrossRef]
- Hong, J.-S.; Lancaster, M.J. Microstrip Filters for RF/Microwave Applications; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Zhu, L.; Sun, S.; Li, R. Microwave Bandpass Filters for Wideband Communications; Wiley: New York, NY, USA, 2011. [Google Scholar]
- Sun, S.; Zhu, L. Capacitive-ended interdigital coupled lines for UWB bandpass filters with improved out-of-band performances. IEEE Microw. Compon. Lett. 2006, 16, 440–442. [Google Scholar] [CrossRef]
- Torrecilla, J.; Marcos, C.; Urruchi, V.; Sánchez-Pena, J.M.; Chojnowska, O. Liquid crystal dual-mode band-pass filter with improved performance. Opto-Electron. Rev. 2015, 23, 121–125. [Google Scholar] [CrossRef]
- Yang, F.; Liu, H.; Wang, T.; Zhang, Y.; Wei, J.; Feng, Z.; Wang, Z. Tunable liquid crystal double-layer frequency selective surface with wide transmission band and small insertion loss. Liq. Cryst. 2024, 51, 2011–2023. [Google Scholar] [CrossRef]
- Prasetiadi, A.E.; Jost, M.; Schulz, B.; Quibeldey, M.; Rabe, T.; Follmann, R.; Jakoby, R. Liquid-crystal-based amplitude tuner and tunable SIW filter fabricated in LTCC technology. Int. J. Microw. Wirel. Technol. 2018, 10, 674–681. [Google Scholar] [CrossRef]
- Lv, J.-F.; Meng, F.-Y.; Zhang, K.; Ding, C.; Han, J.-Q.; Liu, Y.-H.; Wu, Q. Tunable liquid crystal metasurface with polarization selection characteristic. J. Phys. D Appl. Phys. 2022, 55, 375001. [Google Scholar] [CrossRef]
- Kamrath, F.; Polat, E.; Maune, H.; Jakoby, R.; Höft, M. Reconfigurable groove gap microwave filter based on liquid crystal technology with one transmission zero. In Proceedings of the 53rd European Microwave Conference (EuMC), Berlin, Germany, 17–22 September 2023; pp. 215–218. [Google Scholar]
- Choi, J.-Y.; Ma, J.-S.; Oh, H.; Kim, W.-S. A reconfigurable narrow-band bandpass filter using electrically-coupled open-loop resonators based on liquid crystals. J. Phys. D Appl. Phys. 2024, 57, 465307. [Google Scholar] [CrossRef]
- Mirzaee, M.; Virdee, B.S.; Noghanian, S. Compact ultra-wideband bandpass filter with variable notch characteristics based on transversal signal-interaction concepts. Int. J. RF Microw. Comput. Aided Eng. 2014, 24, 549–559. [Google Scholar] [CrossRef]
- Chang, Y.C.; Kao, C.H.; Weng, M.H.; Yang, R.Y. Design of the compact wideband bandpass filter with low loss, high selectivity and wide stopband. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 770–772. [Google Scholar] [CrossRef]
- Sun, S.; Zhu, L.; Tan, H.H. A compact wideband bandpass filter using transversal resonator and asymmetrical interdigital coupled lines. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 173–175. [Google Scholar]
- Battaglia, G.M.; Bellizzi, G.G.; Morabito, A.F.; Sorbello, G.; Isernia, T. A general effective approach to the synthesis of shaped beams for arbitrary fixed-geometry arrays. J. Electromagn. Waves Appl. 2019, 33, 2404–2422. [Google Scholar] [CrossRef]
Parameter | Unit [mm] |
---|---|
wc | 0.10 |
lc | 3.66 |
sc | 0.10 |
wz1 | 1.32 |
lz1 | 8.60 |
wz2 | 0.10 |
lz2 | 3.76 |
r | 3.00 |
VB (V) | Dielectric Constant | f0 (GHz) | 3 dB BW (GHz) | 3 dB FBW (%) | Min. IL (dB) |
---|---|---|---|---|---|
0 | εr,LC,o | 10.76 | 7.31 | 67.97 | 2.41 |
30 | εr,LC,e | 9.46 | 6.18 | 65.26 | 1.81 |
Work | Year | Technology | f0 (GHz) | Min. FBW (%) | Tuning Range (%) | RL (dB) |
---|---|---|---|---|---|---|
[39] | 2015 | Dual-mode IMSL filter | 4.87 | 16.57 | 13.36 | >5 |
[41] | 2018 | 3-pole Chebyshev SIW filter | 29.75 | 11.20 | 2.35 | >19 |
[24] | 2020 | Ring resonator with tuning stubs | 26.15 | 48.17 | 11.85 | >6 |
[42] | 2022 | Metasurface with metal patch | 10.56 | 11.27 | 8.14 | 0 |
[43] | 2023 | 3rd order groove gap resonator | 30.12 | 1.21 | 3.19 | >19 |
[40] | 2024 | LC Double-layer FSS | 13.40 | 57.12 | 9.55 | - |
[44] | 2024 | Open-loop resonator | 10.28 | 6.70 | 11.34 | >15 |
This | SIR with capacitive coupled-line | 10.11 | 64.66 | 12.71 | >10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.-Y.; Ma, J.-S.; Kim, W.-S. Reconfigurable Wideband Bandpass Filter Using Stepped Impedance Resonator Based on Liquid Crystals. Electronics 2025, 14, 2325. https://doi.org/10.3390/electronics14122325
Choi J-Y, Ma J-S, Kim W-S. Reconfigurable Wideband Bandpass Filter Using Stepped Impedance Resonator Based on Liquid Crystals. Electronics. 2025; 14(12):2325. https://doi.org/10.3390/electronics14122325
Chicago/Turabian StyleChoi, Jin-Young, Jun-Seok Ma, and Wook-Sung Kim. 2025. "Reconfigurable Wideband Bandpass Filter Using Stepped Impedance Resonator Based on Liquid Crystals" Electronics 14, no. 12: 2325. https://doi.org/10.3390/electronics14122325
APA StyleChoi, J.-Y., Ma, J.-S., & Kim, W.-S. (2025). Reconfigurable Wideband Bandpass Filter Using Stepped Impedance Resonator Based on Liquid Crystals. Electronics, 14(12), 2325. https://doi.org/10.3390/electronics14122325