Concatenation Augmentation for Improving Deep Learning Models in Finance NLP with Scarce Data
Abstract
:1. Introduction
- Can the proposed method enhance the performance and generalization of DL models in financial NLP tasks under data scarcity conditions?
- To what extent does it outperform or complement existing comparable augmentation methods, such as Wmix and LSR, in these same tasks and conditions?
- Development of the Concatenation Augmentation (CA) method. This new data augmentation technique generates new samples by concatenating inputs and applying a convex additive operator to generate labels, maintaining spatial and semantic coherence.
- Enhancement of the accuracy and generalization capabilities of DL models for automatically extracting key data about independent directors from corporate reports.
2. Related Work
2.1. Conventional Data Augmentation Techniques
2.1.1. Label Smoothing
2.1.2. Mixup and Derivatives: WordMixup (WMix)
2.2. Advanced Data Augmentation Techniques
- Another advanced technique leverages the latent space of Transformer-based models such as BERT [47] or RoBERTa [48]. In this approach, text inputs are encoded into embeddings, and augmentation is performed in the continuous embedding space—either by interpolating between vectors (e.g., Mixup), adding noise, or sampling nearby points. The modified embeddings are then decoded or used directly for training, depending on the task. This strategy allows for smooth and semantically meaningful transformations that are often difficult to achieve with surface-level text manipulations.
- Adversarial data augmentation involves generating examples that are intentionally challenging for a model—often by introducing minimal but semantically significant perturbations. Techniques such as HotFlip [49] craft adversarial inputs by substituting words or characters while preserving the original meaning. These examples are used to fine-tune models, making them more resilient to subtle variations and adversarial attacks.
- Contextual augmentation uses masked language models (e.g., BERT [50]) to replace selected words with contextually appropriate alternatives. Unlike static synonym replacement, this method considers the surrounding text to generate grammatically and semantically coherent augmentations, preserving the integrity of the original sentence.
- Finally, a promising area of ongoing research is the development of semi-supervised models designed to support—or potentially replace—the manual labeling process, like [51].
3. Material and Methods
3.1. Concatenation Augmentation (CA)
3.2. Algorithm
3.3. Advantages of CA
4. Experimentation
4.1. Dataset
- Financial (F): This refers to directors with experience in the financial sector, whether in banking institutions, any type of investment companies, or the stock market in general.
- Executive/Consultant (E/C): This refers to directors who have held or are currently holding different types of management positions in other companies or have carried out outstanding advisory tasks. These directors may have experience in different business sectors and management positions
- Audit/Tax/Accountant (A/T/A): In this case, these are directors with specific expertise in auditing, tax, or accounting.
- Legal (L): Lawyers and legal experts are classified in this category.
- Political (P): This refers to directors who have held or are holding public offices of various kinds, especially political posts.
- Academic (Ac): Finally, this refers to directors with academic experience.
4.2. Base Model
4.3. Transformer-Based Model (Ensemble)
4.4. Experimental Methodology
4.4.1. Base Model
4.4.2. Alternative (Ensemble) Model
5. Results
5.1. Training Improvement
5.2. Precision vs. Computational Cost
5.3. Alternative Model and LLM-Based Augmentation
5.4. Results by Category
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACGR | Annual Corporate Governance Report |
ASGD | Averaged Stochastic Gradient Descent |
BERT | Bidirectional Encoder Representations of Transformers |
CA | Concatenation Augmentation |
CNMV | Comisión Nacional del Mercado de Valores (National Securities Market Commission) |
CV | Curriculum Vitae (Professional Profile or Biography) |
DL | Deep Learning |
LSR | Label Smoothing Regularization |
LSTM | Long Short-Term Memory Neural Network |
MLP | Multi-Layer Perceptron |
NLP | Natural Language Processing |
NT-ASGD | Non-monotonically Triggered ASGD |
RMSE | Root Mean Standard Error |
RoBERTa | A Robustly Optimized BERT Pretaining Approach |
References
- Vasile, V.; Manta, O. FinTech and AI as Opportunities for a Sustainable Economy. FinTech 2025, 4, 10. [Google Scholar] [CrossRef]
- Lewis, C.; Young, S. Fad or future? Automated analysis of financial text and its implications for corporate reporting. Account. Bus. Res. 2019, 49, 587–615. [Google Scholar] [CrossRef]
- Wujec, M. Analysis of the Financial Information Contained in the Texts of Current Reports: A Deep Learning Approach. J. Risk Financ. Manag. 2021, 14, 582. [Google Scholar] [CrossRef]
- Katib, I.; Assiri, F.Y.; Althaqafi, T.; AlKubaisy, Z.M.; Hamed, D.; Ragab, M. Hybrid Hunter–Prey Optimization with Deep Learning-Based Fintech for Predicting Financial Crises in the Economy and Society. Electronics 2023, 12, 3429. [Google Scholar] [CrossRef]
- Skondras, P.; Zervas, P.; Tzimas, G. Generating Synthetic Resume Data with Large Language Models for Enhanced Job Description Classification. Future Internet 2023, 15, 363. [Google Scholar] [CrossRef]
- Vaca, C.; Tejerina, F.; Sahelices, B. Board of Directors’ Profile: A Case for Deep Learning as a Valid Methodology to Finance Research. Int. J. Interact. Multimed. Artif. Intell. 2022, 7, 101. [Google Scholar] [CrossRef]
- Vaca, C.; Astorgano, M.; López-Rivero, A.J.; Tejerina, F.; Sahelices, B. Interpretability of deep learning models in analysis of Spanish financial text. Neural Comput. Appl. 2024, 36, 7509–7527. [Google Scholar] [CrossRef]
- CNMV. Código de Buen Gobierno de las Sociedades Cotizadas. 2015. Available online: https://www.cnmv.es/DocPortal/Publicaciones/CodigoGov/CBG_2020.pdf (accessed on 3 May 2025).
- Chowdhary, K.R. Natural Language Processing. In Fundamentals of Artificial Intelligence; Springer: New Delhi, India, 2020; pp. 603–649. [Google Scholar] [CrossRef]
- Merity, S.; Keskar, N.S.; Socher, R. Regularizing and optimizing LSTM language models. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 4171–4186. [Google Scholar] [CrossRef]
- Lyu, S.; Liu, J. Convolutional Recurrent Neural Networks for Text Classification. J. Database Manag. (JDM) 2021, 32, 65–82. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: http://www.deeplearningbook.org (accessed on 29 March 2024).
- Hanson, S.; Pratt, L. Comparing Biases for Minimal Network Construction with Back-Propagation. Adv. Neural Inf. Process. Syst. 1988, 1, 177–185. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning—ICML’15, Lille, France, 6–11 July 2015; Volume 37, pp. 448–456. [Google Scholar] [CrossRef]
- Simard, P.Y.; LeCun, Y.A.; Denker, J.S.; Victorri, B. Transformation Invariance in Pattern Recognition—Tangent Distance and Tangent Propagation. In Neural Networks: Tricks of the Trade: Second Edition; Springer: Berlin/Heidelberg, Germany, 2012; pp. 235–269. [Google Scholar] [CrossRef]
- Kobayashi, S. Contextual Augmentation: Data Augmentation by Words with Paradigmatic Relations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers); Walker, M., Ji, H., Stent, A., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 452–457. [Google Scholar] [CrossRef]
- Feng, S.Y.; Gangal, V.; Wei, J.; Chandar, S.; Vosoughi, S.; Mitamura, T.; Hovy, E. A Survey of Data Augmentation Approaches for NLP. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021; Zong, C., Xia, F., Li, W., Navigli, R., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021; pp. 968–988. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M.; Furht, B. Text Data Augmentation for Deep Learning. J. Big Data 2021, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tam, D.; Raffel, C.; Bansal, M.; Yang, D. An Empirical Survey of Data Augmentation for Limited Data Learning in NLP. Trans. Assoc. Comput. Linguist. 2023, 11, 191–211. [Google Scholar] [CrossRef]
- Wang, W.Y.; Yang, D. That’s So Annoying!!!: A Lexical and Frame-Semantic Embedding Based Data Augmentation Approach to Automatic Categorization of Annoying Behaviors using #petpeeve Tweets. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Stroudsburg, PA, USA, 17–21 September 2015; pp. 2557–2563. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; LeCun, Y. Character-level Convolutional Networks for Text Classification. In Proceedings of the Advances in Neural Information Processing Systems; Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R., Eds.; ACM: Cambridge, MA, USA, 2015; Volume 28. [Google Scholar] [CrossRef]
- Edunov, S.; Ott, M.; Auli, M.; Grangier, D. Understanding Back-Translation at Scale. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 489–500. [Google Scholar] [CrossRef]
- Wei, J.; Zou, K. EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Stroudsburg, PA, USA, 3–7 November 2019; pp. 6381–6387. [Google Scholar] [CrossRef]
- Andreas, J. Good-Enough Compositional Data Augmentation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; Jurafsky, D., Chai, J., Schluter, N., Tetreault, J., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 7556–7566. [Google Scholar] [CrossRef]
- Yoon, S.; Kim, G.; Park, K. SSMix: Saliency-Based Span Mixup for Text Classification. arXiv 2021, arXiv:2106.08062. [Google Scholar]
- Kong, F.; Zhang, R.; Guo, X.; Mensah, S.; Mao, Y. DropMix: A Textual Data Augmentation Combining Dropout with Mixup. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, United Arab Emirates, 7–11 December 2022; Goldberg, Y., Kozareva, Z., Zhang, Y., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2022; pp. 890–899. [Google Scholar] [CrossRef]
- Morris, J.; Lifland, E.; Yoo, J.Y.; Grigsby, J.; Jin, D.; Qi, Y. TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Online, 16–20 November 2020; Liu, Q., Schlangen, D., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 119–126. [Google Scholar] [CrossRef]
- Chen, J.; Shen, D.; Chen, W.; Yang, D. HiddenCut: Simple Data Augmentation for Natural Language Understanding with Better Generalizability. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online, 1–6 August 2021; Zong, C., Xia, F., Li, W., Navigli, R., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021; pp. 4380–4390. [Google Scholar] [CrossRef]
- Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. Mixup: Beyond Empirical Risk Minimization. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar] [CrossRef]
- Manioudis, M.; Meramveliotakis, G. Broad strokes towards a grand theory in the analysis of sustainable development: A return to the classical political economy. New Political Econ. 2022, 27, 866–878. [Google Scholar] [CrossRef]
- Fu, C.; Lu, L.; Pirabi, M. Advancing green finance: A review of sustainable development. Digit. Econ. Sustain. Dev. 2023, 1, 20. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Mumuni, A.; Mumuni, F. Data augmentation: A comprehensive survey of modern approaches. Array 2022, 16, 100258. [Google Scholar] [CrossRef]
- Ko, T.; Peddinti, V.; Povey, D.; Khudanpur, S. Audio augmentation for speech recognition. In Proceedings of the Interspeech 2015, Dresden, Germany, 6–10 September 2015; pp. 3586–3589. [Google Scholar] [CrossRef]
- Song, X.; Wu, Z.; Huang, Y.; Su, D.; Meng, H. SpecSwap: A Simple Data Augmentation Method for End-to-End Speech Recognition. In Proceedings of the Interspeech 2020, Online, 19 October 2020; pp. 581–585. [Google Scholar] [CrossRef]
- Meng, L.; Xu, J.; Tan, X.; Wang, J.; Qin, T.; Xu, B. MixSpeech: Data Augmentation for Low-Resource Automatic Speech Recognition. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Online, 6–11 June 2021; pp. 7008–7012. [Google Scholar] [CrossRef]
- Chou, H.P.; Chang, S.C.; Pan, J.Y.; Wei, W.; Juan, D.C. Remix: Rebalanced Mixup. In Proceedings of the Computer Vision—ECCV 2020 Workshops, Glasgow, UK, 23–28 August 2020; Bartoli, A., Fusiello, A., Eds.; Springer: Cham, Switzerland, 2020; pp. 95–110. [Google Scholar] [CrossRef]
- Dai, X.; Zhao, X.; Cen, F.; Zhu, F. Data Augmentation Using Mixup and Random Erasing. In Proceedings of the 2022 IEEE International Conference on Networking, Sensing and Control (ICNSC), Online, 20–23 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Psaroudakis, A.; Kollias, D. MixAugment & Mixup: Augmentation Methods for Facial Expression Recognition. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Los Alamitos, CA, USA, 19–22 June 2022; pp. 2366–2374. [Google Scholar] [CrossRef]
- Guo, H. Nonlinear Mixup: Out-Of-Manifold Data Augmentation for Text Classification. Proc. AAAI Conf. Artif. Intell. 2020, 34, 4044–4051. [Google Scholar] [CrossRef]
- Sun, L.; Xia, C.; Yin, W.; Liang, T.; Yu, P.; He, L. Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks. In Proceedings of the International Conference on Computational Linguistics, Online, 8–13 December 2020; pp. 3436–3440. [Google Scholar] [CrossRef]
- Open AI. GPT-4 Technical Report. 2024. Available online: https://cdn.openai.com/papers/gpt-4.pdf (accessed on 3 May 2025).
- Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale, S.; et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv 2023, arXiv:2307.09288. [Google Scholar]
- Colasanto, F.; Grilli, L.; Santoro, D.; Villani, G. BERT’s sentiment score for portfolio optimization: A fine-tuned view in Black and Litterman model. Neural Comput. Appl. 2022, 34, 17507–17521. [Google Scholar] [CrossRef]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692. [Google Scholar]
- Ebrahimi, J.; Rao, A.; Lowd, D.; Dou, D. Hotflip: White-box adversarial examples for text classification. arXiv 2017, arXiv:1712.06751. [Google Scholar]
- Wu, X.; Lv, S.; Zang, L.; Han, J.; Hu, S. Conditional BERT Contextual Augmentation. In Proceedings of the Computational Science—ICCS 2019, Faro, Portugal, 12–14 June 2019; Rodrigues, J.M.F., Cardoso, P.J.S., Monteiro, J., Lam, R., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J.J., Sloot, P.M., Eds.; Springer: Cham, Switzerland, 2019; pp. 84–95. [Google Scholar] [CrossRef]
- Luo, J.; Luo, X.; Chen, X.; Xiao, Z.; Ju, W.; Zhang, M. SemiEvol: Semi-supervised Fine-tuning for LLM Adaptation. arXiv 2024, arXiv:2410.14745. [Google Scholar]
- Güner, B.; Malmendier, U.; Tate, G. Financial expertise of directors. J. Financ. Econ. 2018, 88, 323–354. [Google Scholar] [CrossRef]
- Booth, J.; Deli, D. On executives of financial institutions as outside directors. J. Corp. Financ. 1999, 5, 227–250. [Google Scholar] [CrossRef]
- Faleye, O.; Hoitash, R.; Hoitash, U. Industry expertise on corporate boards. Rev. Quant. Financ. Account. 2018, 50, 441–2479. [Google Scholar] [CrossRef]
- Fich, E. Are Some Outside Directors Better than Others? Evidence from Director Appointments by Fortune 1000 Firms. J. Bus. 2005, 78, 1943–1972. [Google Scholar] [CrossRef]
- Qiao, Z.; Chen, K.; Hung, S. Professionals inside the board room: Accounting expertise of directors and dividend policy. Appl. Econ. 2018, 50, 6100–6111. [Google Scholar] [CrossRef]
- Krishnan, J.; Wen, Y.; Zhao, W. Legal Expertise on Corporate Audit Committees and Financial Reporting Quality. Account. Rev. 2011, 86, 2099–2130. [Google Scholar] [CrossRef]
- Houston, J.; Jiang, L.; Lin, C.; Ma, Y. Political Connections and the Cost of Bank Loans. J. Account. Res. 2014, 52, 193–243. [Google Scholar] [CrossRef]
- Agrawal, A.; Knoeber, C. Do Some Outside Directors Play a Political Role? J. Law Econ. 2001, 44, 179–198. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, J.; Zhu, R. Academic Directors and Corporate Innovation. SSRN Pap. 2021. [Google Scholar] [CrossRef]
- Briskilal, J.; Subalalitha, C.N. Classification of Idiomatic Sentences Using AWD-LSTM. In Proceedings of the Expert Clouds and Applications; Jeena Jacob, I., Gonzalez-Longatt, F.M., Kolandapalayam Shanmugam, S., Izonin, I., Eds.; Springer: Singapore, 2022; pp. 113–124. [Google Scholar] [CrossRef]
- Kiran, S.; Shashi, M.; Madhuri, K. Multi-stage Transfer Learning for Fake News Detection Using AWD-LSTM Network. Int. J. Inf. Technol. Comput. Sci. 2022, 14, 58–69. [Google Scholar] [CrossRef]
- Wang, C.; Li, M.; Smola, A. Language Models with Transformers. arXiv 2019, arXiv:1904.09408. [Google Scholar]
- Zhang, J.G.; Ping Li, J.; Li, H. Language Modeling with Transformer. In Proceedings of the 2019 16th International Computer Conference on Wavelet Active Media Technology and Information Processing, Chengdu, China, 13–15 December 2019; pp. 249–253. [Google Scholar] [CrossRef]
- Aziz, S.; Dowling, M.; Hammami, H.; Piepenbrink, A. Machine learning in finance: A topic modeling approach. Eur. Financ. Manag. 2022, 28, 744–770. [Google Scholar] [CrossRef]
- Howard, J.; Ruder, S. Universal Language Model Fine-tuning for Text Classification. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, 15–20 July 2018; Gurevych, I., Miyao, Y., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 328–339. [Google Scholar] [CrossRef]
Augmentation | Metric | F | E/C | A/T/A | L | P | Ac |
---|---|---|---|---|---|---|---|
None | MAE | 0.133 | 0.211 | 0.072 | 0.085 | 0.095 | 0.088 |
RMSE | 0.204 | 0.316 | 0.182 | 0.185 | 0.167 | 0.170 | |
r | 0.869 | 0.759 | 0.762 | 0.858 | 0.781 | 0.878 | |
Hit Rate | 78.2% | 69.4% | 91.3% | 92.3% | 84.2% | 84.1% | |
CA (+3000 inputs) | MAE | 0.038 | 0.027 | 0.007 | 0.014 | 0.020 | 0.038 |
RMSE | 0.095 | 0.090 | 0.023 | 0.028 | 0.036 | 0.091 | |
r | 0.970 | 0.979 | 0.993 | 0.994 | 0.987 | 0.972 | |
Hit Rate | 92.5% | 97.5% | 99.7% | 99.6% | 96.5% | 92.4% | |
SLR (+3000 inputs) | MAE | 0.076 | 0.080 | 0.026 | 0.021 | 0.050 | 0.043 |
RMSE | 0.146 | 0.166 | 0.049 | 0.047 | 0.070 | 0.103 | |
r | 0.940 | 0.942 | 0.982 | 0.989 | 0.980 | 0.961 | |
Hit Rate | 88.6% | 90.6% | 97.7% | 97.6% | 92.6% | 92.5% | |
WMix (+3000 inputs) | MAE | 0.089 | 0.133 | 0.046 | 0.056 | 0.068 | 0.067 |
RMSE | 0.134 | 0.209 | 0.111 | 0.118 | 0.112 | 0.128 | |
r | 0.948 | 0.906 | 0.953 | 0.948 | 0.913 | 0.935 | |
Hit Rate | 85.8% | 78.9% | 91.9% | 92.9% | 88.8% | 89.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaca, C.; Román-Gallego, J.-Á.; Barroso-García, V.; Tejerina, F.; Sahelices, B. Concatenation Augmentation for Improving Deep Learning Models in Finance NLP with Scarce Data. Electronics 2025, 14, 2289. https://doi.org/10.3390/electronics14112289
Vaca C, Román-Gallego J-Á, Barroso-García V, Tejerina F, Sahelices B. Concatenation Augmentation for Improving Deep Learning Models in Finance NLP with Scarce Data. Electronics. 2025; 14(11):2289. https://doi.org/10.3390/electronics14112289
Chicago/Turabian StyleVaca, César, Jesús-Ángel Román-Gallego, Verónica Barroso-García, Fernando Tejerina, and Benjamín Sahelices. 2025. "Concatenation Augmentation for Improving Deep Learning Models in Finance NLP with Scarce Data" Electronics 14, no. 11: 2289. https://doi.org/10.3390/electronics14112289
APA StyleVaca, C., Román-Gallego, J.-Á., Barroso-García, V., Tejerina, F., & Sahelices, B. (2025). Concatenation Augmentation for Improving Deep Learning Models in Finance NLP with Scarce Data. Electronics, 14(11), 2289. https://doi.org/10.3390/electronics14112289