Deep Learning Approach for Equivalent Circuit Model Parameter Identification of Lithium-Ion Batteries
Abstract
:1. Introduction
- This study is the first to propose the use of DL methods for estimating ECM parameters from time-series data. The best-performing baseline model achieved an average mean absolute percentage error (MAPE) across the five parameters of 0.52073%.
- Using full factorial design (FFD), advanced models such as one-dimensional convolutional neural networks (1DCNNs) and the temporal convolutional network (TCN) were further proposed. Compared to the best-performing baseline recurrent neural network (RNN) model, the average MAPE across the five parameters was improved by 30.4% and 37.8%, respectively.
- This study also proposed using Latin Hypercube Sampling (LHS) to generate training datasets for DL models. Compared to FFD, the LHS method achieved better estimation performance while requiring only two-thirds of the training samples needed by FFD. The average MAPE across the five parameters was improved by 34.4%.
2. Description of the Generation of Training Dataset
3. Description of the Deep Learning Models Used in This Study
- Input Gate: Determines how much of the current input should be stored in the memory cell.
- Forget Gate: Decides how much of the information from the previous time step should be retained.
- Output Gate: Controls the output of the memory cell at the current time step.
4. Simulation and Experimental Results
5. Discussion of the Obtained Results
5.1. Different Model Performance Across Parameters
5.2. Overall Model Performance
5.3. Impact of Sampling Methods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, X.; Wang, S.; Ma, S.; Xie, J.; Zheng, Y. Parameter sensitivity analysis and simplification of equivalent circuit model for the state of charge of lithium-ion batteries. Electrochim. Acta 2019, 330, 135239. [Google Scholar] [CrossRef]
- Lai, X.; Gao, W.; Zheng, Y.; Ouyang, M.; Li, J.; Han, X.; Zhou, L. A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries. Electrochim. Acta 2018, 295, 1057–1066. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Yu, T.F.; Ramsden, G.; Marco, J.; Grandjean, T. Advancements in parameter estimation techniques for 1RC and 2RC equivalent circuit models of lithium-ion batteries: A comprehensive review. J. Energy Storage 2025, 113, 115581. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, D.; Cheng, J.; Wang, B.; Luk, P.C.K. An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles. Appl. Energy 2019, 254, 113615. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.; Jiang, L.; Qiao, X.; Cao, Y.; Yu, J. Research on fitting strategy in HPPC test for Li-ion battery. In Proceedings of the 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Chengdu, China, 23–25 November 2019; pp. 1776–1780. [Google Scholar]
- Salameh, M.; Schweitzer, B.; Sveum, P.; Al-Hallaj, S.; Krishnamurthy, M. Online temperature estimation for phase change composite-18650 lithium-ion cells based battery pack. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 3128–3133. [Google Scholar]
- Lai, X.; Zheng, Y.; Sun, T. A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries. Electrochim. Acta 2018, 259, 566–577. [Google Scholar] [CrossRef]
- Do, D.V.; Forgez, C.; Benkara, K.E.K.; Friedrich, G. Impedance observer for a Li-ion battery using Kalman filter. IEEE Trans. Veh. Technol. 2009, 58, 3930–3937. [Google Scholar]
- Andre, D.; Meiler, M.; Steiner, K.; Walz, H.; Soczka-Guth, T.; Sauer, D.U. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling. J. Power Sources 2011, 196, 5349–5356. [Google Scholar] [CrossRef]
- Koirala, N.; He, F.; Shen, W. Comparison of two battery equivalent circuit models for state of charge estimation in electric vehicles. In Proceedings of the 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 15–17 June 2015; pp. 17–22. [Google Scholar]
- Hales, A.; Brouillet, E.; Wang, Z.; Edwards, B.; Samieian, M.A.; Kay, J.; Offer, G. Isothermal temperature control for battery testing and battery model parameterization. SAE Int. J. Electr. Veh. 2021, 10, 105–122. [Google Scholar] [CrossRef]
- Nemes, R.O.; Ciornei, S.M.; Martis, C. Parameters identification using experimental measurements for equivalent circuit Lithium-Ion cell models. In Proceedings of the 2019 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 28–30 March 2019; pp. 1–6. [Google Scholar]
- Schweighofer, B.; Raab, K.M.; Brasseur, G. Modeling of high power automotive batteries by the use of an automated test system. IEEE Trans. Instrum. Meas. 2003, 52, 1087–1091. [Google Scholar] [CrossRef]
- Samieian, M.A.; Hales, A.; Patel, Y. A novel experimental technique for use in fast parameterisation of equivalent circuit models for lithium-ion batteries. Batteries 2022, 8, 125. [Google Scholar] [CrossRef]
- Knap, V.; Stroe, D.I.; Teodorescu, R.; Swierczynski, M.; Stanciu, T. Comparison of parametrization techniques for an electrical circuit model of Lithium-Sulfur batteries. In Proceedings of the 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), Cambridge, UK, 22–24 July 2015; pp. 1278–1283. [Google Scholar]
- Pai, H.Y.; Liu, Y.H.; Ye, S.P. Online estimation of lithium-ion battery equivalent circuit model parameters and state of charge using time-domain assisted decoupled recursive least squares technique. J. Energy Storage 2023, 62, 106901. [Google Scholar] [CrossRef]
- How, D.N.; Hannan, M.A.; Lipu, M.H.; Ker, P.J. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review. IEEE Access 2019, 7, 136116–136136. [Google Scholar] [CrossRef]
- Padder, S.G.; Ambulkar, J.; Banotra, A.; Modem, S.; Maheshwari, S.; Jayaramulu, K.; Kundu, C. Data-driven approaches for estimation of EV battery SoC and SoH: A review. IEEE Access 2025, 13, 35048–35067. [Google Scholar] [CrossRef]
- Li, Y.; Liu, K.; Foley, A.M.; Zülke, A.; Berecibar, M.; Nanini-Maury, E.; Hoster, H.E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renew. Sustain. Energy Rev. 2019, 113, 109254. [Google Scholar] [CrossRef]
- Gong, J.; Xu, B.; Chen, F.; Zhou, G. Predictive modeling for electric vehicle battery state of health: A comprehensive literature review. Energies 2025, 18, 337. [Google Scholar] [CrossRef]
- Mazumder, M.; Kumar, P.; Ganguly, S. Optimal parameter extraction and performance evaluation of equivalent circuit models for lithium-ion batteries under dynamic conditions. In Proceedings of the 2024 6th International Conference on Energy, Power and Environment (ICEPE), Shillong, India, 20–22 June 2024; pp. 1–6. [Google Scholar]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D 2020, 404, 132306. [Google Scholar] [CrossRef]
- Mienye, I.D.; Swart, T.G.; Obaido, G. Recurrent neural networks: A comprehensive review of architectures, variants, and applications. Information 2024, 15, 517. [Google Scholar] [CrossRef]
- Lea, C.; Flynn, M.D.; Vidal, R.; Reiter, A.; Hager, G.D. Temporal convolutional networks for action segmentation and detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 156–165. [Google Scholar]
- Sánchez-Reolid, R.; de la Rosa, F.L.; López, M.T.; Fernández-Caballero, A. One-dimensional convolutional neural networks for low/high arousal classification from electrodermal activity. Biomed. Signal Process. Control 2022, 71, 103203. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages |
---|---|---|
Analytical | Precise for linear systems; computationally efficient. | Ineffective for nonlinear systems; sensitive to noise. |
Kalman Filter | Real-time adaptability; handles uncertainty. | High computational demand; model-dependent. |
Time-Domain MLE | Handles nonlinearities; large parameter spaces. | Computationally expensive; risk of local optima. |
Frequency-Domain MLE | Detailed spectral analysis; robust for offline use. | Complex; not suited for real-time. |
Least Squares | Efficient for large datasets; simple implementation. | Sensitive to noise; not for dynamic systems. |
Recursive Least Squares | Online adaptability; suitable for embedded systems. | Noise-sensitive; complex for high-dimensionality systems. |
Hybrid | Combines strengths; high accuracy. | Complex implementation; computationally demanding. |
Hyperparameter | RNN, LSTM, GRU | TCN | 1DCNN |
---|---|---|---|
Epoch | 100 | 100 | 100 |
Batch size | 32 | 32 | 32 |
Optimizer | Adam | Adam | Adam |
Learning rate | |||
Input size | 1 | 1 | 1 |
Hidden size | [128, 64] | [64, 128, 256] | [128, 64] |
Num layers | 2 | N.A. | N.A. |
Dropout | 0.2 | 0.2 | 0.2 |
Kernel size | N.A. | 3 | 3 |
Pooling kernel size | N.A. | 2 | 2 |
Pooling stride | N.A. | 2 | 2 |
Model | r0 | r1 | r2 | c1 | c2 | Overall MAPE |
---|---|---|---|---|---|---|
1DCNN | 0.363659 | 0.238937 | 0.473599 | 0.370342 | 0.366404 | 0.362589 |
GRU | 0.781766 | 0.5047 | 0.218721 | 0.708439 | 0.390023 | 0.52073 |
LSTM | 1.658804 | 0.848563 | 0.292444 | 0.906239 | 0.680044 | 0.772798 |
RNN | 24.33261 | 9.611514 | 1.868758 | 9.363454 | 4.312729 | 9.897812 |
TCN | 0.53422 | 0.265169 | 0.162086 | 0.380379 | 0.268678 | 0.322106 |
Model | r0 | r1 | r2 | c1 | c2 | Overall MAPE |
---|---|---|---|---|---|---|
1DCNN | 0.385015 | 0.23341 | 0.117348 | 0.199274 | 0.251999 | 0.237409 |
GRU | 0.725764 | 0.392564 | 0.214951 | 0.584695 | 0.347944 | 0.453094 |
LSTM | 0.834493 | 0.593983 | 0.214426 | 0.961868 | 0.536404 | 0.628235 |
RNN | 24.53781 | 8.153441 | 1.969907 | 9.449754 | 4.336778 | 8.698718 |
TCN | 0.694115 | 0.257292 | 0.198845 | 0.330124 | 0.274371 | 0.350949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, K.-C.; Khanh, D.N.; Hsueh, Y.-F.; Wang, S.-C.; Liu, Y.-H. Deep Learning Approach for Equivalent Circuit Model Parameter Identification of Lithium-Ion Batteries. Electronics 2025, 14, 2201. https://doi.org/10.3390/electronics14112201
Ho K-C, Khanh DN, Hsueh Y-F, Wang S-C, Liu Y-H. Deep Learning Approach for Equivalent Circuit Model Parameter Identification of Lithium-Ion Batteries. Electronics. 2025; 14(11):2201. https://doi.org/10.3390/electronics14112201
Chicago/Turabian StyleHo, Kun-Che, Dat Nguyen Khanh, Yu-Fang Hsueh, Shun-Chung Wang, and Yi-Hua Liu. 2025. "Deep Learning Approach for Equivalent Circuit Model Parameter Identification of Lithium-Ion Batteries" Electronics 14, no. 11: 2201. https://doi.org/10.3390/electronics14112201
APA StyleHo, K.-C., Khanh, D. N., Hsueh, Y.-F., Wang, S.-C., & Liu, Y.-H. (2025). Deep Learning Approach for Equivalent Circuit Model Parameter Identification of Lithium-Ion Batteries. Electronics, 14(11), 2201. https://doi.org/10.3390/electronics14112201