Anti-Spoofing Method by RGB-D Deep Learning for Robust to Various Domain Shifts
Abstract
:1. Introduction
2. Background and Previous Works
3. Face Anti-Spoofing Method Using RGB-D Image
3.1. Facial Region Detection
3.2. Pixel Correction of Depth Image
3.3. Network for Face Anti-Spoofing
4. Experimental Results and Discussion
4.1. Depth Image Correction Performance
4.2. Face Anti-Spoofing Performances Across Various Protocols
4.3. Face Anti-Spoofing Performances Using Domain Adversarial Learning
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Agarwal, A.; Singh, R.; Vatsa, M. Face Anti-Spoofing Using Haralick Features. In Proceedings of the IEEE International Conference on Biometrics Theory, Applications and Systems, Arlington, VA, USA, 13–16 September 2016; pp. 1–6. [Google Scholar]
- Pan, G.; Sun, L.; Wu, Z.; Lao, S. Eyeblink-Based Anti-Spoofing in Face Recognition from a Generic Webcamera. In Proceedings of the IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007; pp. 1–8. [Google Scholar]
- Li, J. Eye Blink Detection Based on Multiple Gabor Response Waves. In Proceedings of the IEEE International Conference on Machine Learning and Cybernetics, Kunming, China, 12–15 July 2008; pp. 2852–2856. [Google Scholar]
- Kollreider, K.; Fronthaler, H.; Bigun, J. Evaluating Liveness by Face Images and the Structure Tensor. In Proceedings of the IEEE Workshop on Automatic Identification Advanced Technologies (AutoID), Buffalo, NY, USA, 17–18 October 2005; pp. 75–80. [Google Scholar]
- Bao, W.; Li, H.; Li, N.; Jiang, W. A Liveness Detection Method for Face Recognition Based on Optical Flow Field. In Proceedings of the IEEE International Conference on Image Analysis and Signal Processing, Taizhou, China, 11–13 April 2009; pp. 233–236. [Google Scholar]
- Kollreider, K.; Fronthaler, H.; Faraj, M.I.; Bigun, J. Real-Time Face Detection and Motion Analysis with Application in “Liveness” Assessment. IEEE Trans. Inf. Forensics Secur. 2007, 2, 548–558. [Google Scholar] [CrossRef]
- Boulkenafet, Z.; Komulainen, J.; Hadid, A. Face Anti-Spoofing Based on Color Texture Analysis. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 2636–2640. [Google Scholar]
- Maatta, J.; Hadid, A.; Pietikainen, M. Face Spoofing Detection from Single Images Using Micro-Texture Analysis. In Proceedings of the International Joint Conference on Biometrics (IJCB), Washington, DC, USA, 11–13 October 2011; pp. 1–7. [Google Scholar]
- Chingovska, I.; Anjos, A.; Marcel, S. On the Effectiveness of Local Binary Patterns in Face Anti-Spoofing. In Proceedings of the International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 6–7 September 2012; pp. 1–7. [Google Scholar]
- Tan, X.; Li, Y.; Liu, J.; Jiang, L. Face Liveness Detection from a Single Image with Sparse Low Rank Bilinear Discriminative Model. Lect. Notes Comput. Sci. 2010, 6316, 504–517. [Google Scholar]
- Peixoto, B.; Michelassi, C.; Rocha, A. Face Liveness Detection under Bad Illumination Conditions. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Brussels, Belgium, 11–14 September 2011; pp. 3557–3560. [Google Scholar]
- Wang, C.-Y.; Lu, Y.-D.; Yang, S.-T.; Lai, S.-H. PatchNet: A Simple Face Anti-Spoofing Framework via Fine-Grained Patch Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 19–24 June 2022; pp. 20249–20258. [Google Scholar]
- Asim, M.; Ming, Z.; Javed, M.Y. CNN Based Spatio-Temporal Feature Extraction for Face Anti-Spoofing. In Proceedings of the 2nd International Conference on Image, Vision and Computing (ICIVC), Chengdu, China, 2–4 June 2017; pp. 234–238. [Google Scholar]
- Hadiprakoso, R.B.; Setiawan, H.; Girinoto, G. Face Anti-Spoofing Using CNN Classifier & Face Liveness Detection. In Proceedings of the 3rd International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 24–26 March 2020; pp. 143–147. [Google Scholar]
- Gan, J.; Li, S.; Zhai, Y.; Liu, C. 3D Convolutional Neural Network Based on Face Anti-Spoofing. In Proceedings of the 2nd International Conference on Multimedia and Image Processing (ICMIP), Wuhan, China, 24–26 March 2017; pp. 1–5. [Google Scholar]
- Wang, Y.; Song, X.; Xu, T.; Feng, Z.; Wu, X.-J. From RGB to Depth: Domain Transfer Network for Face Anti-Spoofing. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4280–4290. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, Z.; Zhao, C.; Zhu, X.; Qin, Y.; Zhou, Q.; Lei, Z. Deep Spatial Gradient and Temporal Depth Learning for Face Anti-Spoofing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 5041–5050. [Google Scholar]
- Yu, Z.; Qin, Y.; Li, X.; Wang, Z.; Zhao, C.; Lei, Z.; Zhao, G. Multi-Modal Face Anti-Spoofing Based on Central Difference Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 2766–2774. [Google Scholar]
- Zhang, Z.; Yi, D.; Lei, Z.; Li, S.Z. Face Liveness Detection by Learning Multispectral Reflectance Distributions. In Proceedings of the IEEE International Conference on Automatic Face & Gesture Recognition (FG), Santa Barbara, CA, USA, 21–25 March 2011; pp. 436–441. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- George, A.; Marcel, S. Deep Pixel-Wise Binary Supervision for Face Presentation Attack Detection. In Proceedings of the 2019 International Conference on Biometrics (ICB), Crete, Greece, 4–7 June 2019; pp. 1–8. [Google Scholar]
- Yu, Z.; Zhao, C.; Wang, Z.; Qin, Y.; Su, Z.; Li, X.; Zhao, G. Searching Central Difference Convolutional Networks for Face Anti-Spoofing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 5295–5305. [Google Scholar]
- Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A Unified Embedding for Face Recognition and Clustering. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar]
- Yu, C.; Gao, C.; Wang, J.; Yu, G.; Shen, C.; Sang, N. Bisenet V2: Bilateral Network with Guided Aggregation for Real-Time Semantic Segmentation. Int. J. Comput. Vis. 2021, 129, 3051–3068. [Google Scholar] [CrossRef]
- Face-Parsing. Available online: https://github.com/zllrunning/face-parsing.PyTorch (accessed on 16 April 2025).
- Serra, J.; Soille, P. Mathematical Morphology and Its Applications to Image Processing, 1st ed.; Springer: Dordrecht, The Netherlands, 2012; Volume 2. [Google Scholar]
- Ramachandran, P.; Parmar, N.; Vaswani, A.; Bello, I.; Levskaya, A.; Shlens, J. Stand-Alone Self-Attention in Vision Models. Adv. Neural Inf. Process. Syst. 2019, 32, 68–80. [Google Scholar]
- Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Lempitsky, V. Domain-Adversarial Training of Neural Networks. J. Mach. Learn. Res. 2016, 17, 2030–2096. [Google Scholar]
- Images for Liveness Detection. Available online: https://aihub.or.kr/ (accessed on 16 April 2025).
- ISO/IEC JTC 1/SC 37 Biometrics: Information Technology Biometric Presentation Attack Detection Part 1: Framework. 2016. Available online: https://www.iso.org/obp/ui/iso (accessed on 16 April 2025).
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobilenetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]
- Lee, Y.; Kwak, Y.; Shin, J. Robust face anti-spoofing framework with Convolutional Vision Transformer. In Proceedings of the 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 8–11 October 2023; pp. 1015–1019. [Google Scholar]
- Liu, A.; Tan, Z.; Yu, Z.; Zhao, C.; Wan, J.; Liang, Y.; Lei, Z.; Zhang, D.; Li, S.Z.; Guo, G. Fm-vit: Flexible modal vision transformers for face anti-spoofing. IEEE Trans. Inf. Forensics Secur. 2023, 18, 4775–4786. [Google Scholar] [CrossRef]
- Pini, S.; Borghi, G.; Vezzani, R.; Maltoni, D.; Cucchiara, R. A systematic comparison of depth map representations for face recognition. Sensors 2021, 21, 944. [Google Scholar] [CrossRef] [PubMed]
- Chiu, M.T.; Cheng, H.Y.; Wang, C.Y.; Lai, S.H. High-accuracy RGB-D face recognition via segmentation-aware face depth estimation and mask-guided attention network. In Proceedings of the International Conference on Automatic Face and Gesture Recognition, Jodhpur, India, 15–18 December 2021; pp. 1–8. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional neural network based image classification using small training sample size. In Proceedings of the IAPR Asian Conference on Pattern Recognition, Kuala Lumpur, Malaysia, 3–6 November 2015; pp. 730–734. [Google Scholar]
Protocol | Lighting Type | Camera | Attack Type | No. Subjects | No. Images | |||||
---|---|---|---|---|---|---|---|---|---|---|
Replay | 3D Mask | Live | Spoof | Total | ||||||
1 | Train | 1, 2 | D435 | 1, 2, 7, 8 | 1, 2 | 1 | 230 | 2300 | 14,504 | 16,804 |
Validation | 1, 2 | D435 | 1, 2, 7, 8 | 1, 2 | 1 | 50 | 500 | 3200 | 3700 | |
Test | 3 | D435 | 1, 2, 7, 8 | 1, 2 | 1 | 25 | 250 | 1590 | 1840 | |
2 | Train | 1, 2, 3 | D435 | 1, 8 | 1 | 1 | 350 | 3500 | 11,428 | 14,928 |
Validation | 1, 2, 3 | D435 | 1, 8 | 1 | 1 | 75 | 750 | 2490 | 3240 | |
Test | 1, 2, 3 | D435 | 2, 7 | 2 | None | 75 | 750 | 2280 | 3030 | |
3 | Train | 2 | D435 | 7, 8 | None | None | 120 | 1200 | 2400 | 3600 |
Validation | 2 | D435 | 7, 8 | None | None | 25 | 250 | 520 | 770 | |
Test | 2 | SR305 | 7, 8 | None | None | 105 | 3150 | 6300 | 9450 | |
4 | Train | 1, 3 | D435 | 1, 2 | 1, 2 | 1 | 230 | 2300 | 9904 | 12,204 |
Validation | 1, 3 | D435 | 1, 2 | 1, 2 | 1 | 50 | 500 | 2200 | 2700 | |
Test | 2 | SR305 | 3, 4, 5, 6, 7, 8 | None | None | 105 | 3150 | 18,900 | 22,050 |
Depth Pixel Correction | APCER (%) | BPCER (%) | ACER (%) |
---|---|---|---|
No | 41.90 | 10.53 | 26.22 |
Yes | 30.95 | 17.87 | 24.41 |
Protocol | Network | APCER(%) | BPCER(%) | ACER(%) |
---|---|---|---|---|
1 | ResNet50 [20] | 0.16 | 28.00 | 14.08 |
MobileNet [36] | 3.99 | 4.00 | 3.99 | |
VGG19 [37] | 0.22 | 2.32 | 1.27 | |
Ours w/o Self-Attention | 1.12 | 24.00 | 12.56 | |
Ours | 1.44 | 8.00 | 4.72 | |
2 | ResNet50 [20] | 1.29 | 2.67 | 1.98 |
MobileNet [36] | 2.23 | 4.00 | 3.12 | |
VGG19 [37] | 0.74 | 0.40 | 0.57 | |
Ours w/o Self-Attention | 0.97 | 2.67 | 1.82 | |
Ours | 1.29 | 1.34 | 1.31 | |
3 | ResNet50 [20] | 18.52 | 1.62 | 10.07 |
MobileNet [36] | 0.43 | 14.95 | 7.69 | |
VGG19 [37] | 1.44 | 4.78 | 3.11 | |
Ours w/o Self-Attention | 8.48 | 13.24 | 10.86 | |
Ours | 3.29 | 11.14 | 7.21 | |
4 | ResNet50 [20] | 37.32 | 35.59 | 36.46 |
MobileNet [36] | 38.15 | 26.86 | 32.51 | |
VGG19 [37] | 5.46 | 9.18 | 7.32 | |
Ours w/o Self-Attention | 5.23 | 57.33 | 31.28 | |
Ours | 6.76 | 55.37 | 31.06 |
Model | No. of Param. (×106) | GFLOPs | Inference Speed (FPS) |
---|---|---|---|
ResNet50 [20] | 75.46 | 1.62 | 525.61 |
MobileNet [36] | 72.77 | 0.17 | 1019.66 |
VGG19 [37] | 262.36 | 7.73 | 153.49 |
Ours w/o Self-Attention | 10.21 | 0.29 | 2572.15 |
Ours | 10.37 | 0.30 | 2137.04 |
Protocol | λ | APCER (%) | BPCER (%) | ACER (%) |
---|---|---|---|---|
1 | 0.00 | 1.44 | 8.00 | 4.72 |
0.03 | 3.34 | 4.00 | 3.68 | |
0.05 | 1.90 | 16.00 | 8.95 | |
0.07 | 1.43 | 8.00 | 4.72 | |
0.10 | 2.23 | 16.00 | 9.12 | |
0.30 | 0.64 | 20.00 | 10.32 | |
0.50 | 14.19 | 16.00 | 15.10 | |
2 | 0.00 | 1.29 | 1.34 | 1.31 |
0.03 | 1.08 | 5.34 | 3.20 | |
0.05 | 2.26 | 2.67 | 2.46 | |
0.07 | 2.37 | 0.00 | 1.18 | |
0.10 | 0.65 | 6.67 | 3.66 | |
0.30 | 2.79 | 4.00 | 3.40 | |
0.50 | 4.73 | 2.67 | 3.70 | |
3 | 0.00 | 3.29 | 11.14 | 7.21 |
0.03 | 11.87 | 13.59 | 12.73 | |
0.05 | 7.21 | 5.08 | 6.14 | |
0.07 | 11.37 | 7.27 | 9.32 | |
0.10 | 7.56 | 7.71 | 7.64 | |
0.30 | 11.48 | 6.29 | 8.88 | |
0.50 | 11.05 | 9.46 | 10.25 | |
4 | 0.00 | 6.76 | 55.37 | 31.06 |
0.03 | 1.27 | 48.92 | 25.10 | |
0.05 | 16.40 | 14.44 | 15.42 | |
0.07 | 5.21 | 20.29 | 12.75 | |
0.10 | 27.81 | 18.48 | 23.14 | |
0.30 | 30.34 | 24.22 | 27.28 | |
0.50 | 4.43 | 31.49 | 17.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-j.; Kwon, S.-k. Anti-Spoofing Method by RGB-D Deep Learning for Robust to Various Domain Shifts. Electronics 2025, 14, 2182. https://doi.org/10.3390/electronics14112182
Kim H-j, Kwon S-k. Anti-Spoofing Method by RGB-D Deep Learning for Robust to Various Domain Shifts. Electronics. 2025; 14(11):2182. https://doi.org/10.3390/electronics14112182
Chicago/Turabian StyleKim, Hee-jin, and Soon-kak Kwon. 2025. "Anti-Spoofing Method by RGB-D Deep Learning for Robust to Various Domain Shifts" Electronics 14, no. 11: 2182. https://doi.org/10.3390/electronics14112182
APA StyleKim, H.-j., & Kwon, S.-k. (2025). Anti-Spoofing Method by RGB-D Deep Learning for Robust to Various Domain Shifts. Electronics, 14(11), 2182. https://doi.org/10.3390/electronics14112182