Mergeable Probabilistic Voxel Mapping for LiDAR–Inertial–Visual Odometry
Abstract
:1. Introduction
- We propose a novel LiDAR–inertial–visual odometry (LIVO) framework that efficiently captures environmental geometric planar features and color information while simultaneously enhancing localization accuracy and maintaining real-time computational performance.
- A point cloud processing method based on mergeable probabilistic voxel mapping is employed to probabilistically model the noise in the point clouds. By constructing voxel plane models through probabilistic modeling to estimate the system state, more accurate point cloud registration is achieved. Meanwhile, a hash table and union-find are used to merge voxel planes with coplanar relationships, effectively reducing the computational load.
- In the visual–inertial subsystem (VIO), an accurate visual tracking and optimization scheme is designed. Tracking points are obtained through a global map projection, and outlier tracking points are removed using a random sample consensus algorithm based on a dynamic Bayesian network [36]. A joint optimization is then performed using frame-to-frame reprojection error and frame-to-map RGB color error, further improving system accuracy and robustness.
2. Related Work
2.1. Visual SLAM
2.2. LiDAR SLAM
2.3. LiDAR–Visual SLAM
3. Notation and System Overview
3.1. Notation
3.2. System Overview
4. LiDAR–Inertial Odometry Subsystem
4.1. 3DOF Probabilistic Plane Representation
4.1.1. Uncertainty of the Point
4.1.2. Uncertainty of a 3DoF Plane
4.2. Voxel Map Construction and Updates
4.2.1. Voxel Map Construction
4.2.2. Voxel Merging and Updating
4.3. State Estimation Based on ESIKF
5. Visual–Inertial Odometry Subsystem
5.1. Outlier Rejection
Algorithm 1: BANSAC algorithm outline |
Input: Data Q and number of iterations K |
Output: Best model θ* and C* |
|
5.2. Frame-to-Frame Reprojection Error
5.3. Frame-to-Map RGB Color Error
5.4. State Estimation Based on ESIKF
6. Map Management
- (1)
- LiDAR Submap: In the LiDAR submap, raw point clouds are partitioned into fixed-size voxel grids for processing. When the point cloud within a voxel forms a valid planar feature, the system records the geometric parameters of the plane to support subsequent point-to-plane matching and voxel merging operations. Voxel management is implemented via a union-find data structure combined with a hash table for efficient spatial indexing. To prevent computational overload, a maximum capacity threshold of 50 point clouds per voxel is enforced. Once this storage limit is reached, the voxel will stop updating and clear the internal point cloud data, retaining only the calculated plane feature parameters.
- (2)
- Global Map: For the global map point , the global map stores not only the position of the map point in the global coordinate system but also the RGB information of the map point. After the system state is updated using the ESIKF in the VIO system, a color fusion strategy based on Bayesian inference is employed. This strategy probabilistically integrates the color observations obtained via projection from the current image frame with the prior color stored in the map points. The weighted update mechanism in this process significantly enhances the accuracy of color estimation. Subsequently, based on the updated system state from ESIKF, the projection operation of the map point to the current image plane is re-executed, and the reprojection error and RGB color error in the current image frame are calculated. If the error exceeds a set threshold, the tracked point is discarded to ensure the accuracy of the system state and maintain the consistency of the map. This approach not only enhances the system’s robustness under complex lighting conditions but also reduces the impact of errors caused by incorrect tracking points on system localization and mapping.
7. Experiments and Analysis
7.1. Experiments on the M2DGR Datasets
7.2. Experiments on the NTU-VIRAL Datasets
7.3. Visualization for Maps
7.4. Running Time Analysis
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Levinson, J.; Askeland, J.; Becker, J.; Dolson, J.; Held, D.; Kammel, S.; Kolter, J.Z.; Langer, D.; Pink, O.; Pratt, V. Towards fully autonomous driving: Systems and algorithms. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden, Germany, 5–9 June 2011; pp. 163–168. [Google Scholar]
- Singandhupe, A.; La, H.M. A review of slam techniques and security in autonomous driving. In Proceedings of the 2019 Third IEEE International Conference on Robotic Computing (IRC), Naples, Italy, 25–27 February 2019; pp. 602–607. [Google Scholar]
- Beinschob, P.; Reinke, C. Graph SLAM based mapping for AGV localization in large-scale warehouses. In Proceedings of the 2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 3–5 September 2015; pp. 245–248. [Google Scholar]
- Gao, F.; Wu, W.; Gao, W.; Shen, S. Flying on point clouds: Online trajectory generation and autonomous navigation for quadrotors in cluttered environments. J. Field Robot. 2019, 36, 710–733. [Google Scholar] [CrossRef]
- Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-time single camera SLAM. EEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1052–1067. [Google Scholar] [CrossRef] [PubMed]
- Klein, G.; Murray, D. Parallel tracking and mapping for small AR workspaces. In Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16 November 2007; pp. 225–234. [Google Scholar]
- Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system. EEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef]
- Mur-Artal, R.; Tardós, J.D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar] [CrossRef]
- Campos, C.; Elvira, R.; Rodríguez, J.J.G.; Montiel, J.M.; Tardós, J.D. Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. EEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Mourikis, A.I.; Roumeliotis, S.I. A multi-state constraint Kalman filter for vision-aided inertial navigation. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 3565–3572. [Google Scholar]
- Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 2018, 34, 1004–1020. [Google Scholar] [CrossRef]
- Newcombe, R.A.; Lovegrove, S.J.; Davison, A.J. DTAM: Dense tracking and mapping in real-time. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2320–2327. [Google Scholar]
- Forster, C.; Pizzoli, M.; Scaramuzza, D. SVO: Fast semi-direct monocular visual odometry. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 15–22. [Google Scholar]
- Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-scale direct monocular SLAM. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 834–849. [Google Scholar]
- Zhang, J.; Singh, S. LOAM: Lidar odometry and mapping in real-time. In Proceedings of the Robotics: Science and systems, Berkeley, CA, USA, 12–16 July 2014; pp. 1–9. [Google Scholar]
- Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping. In Proceedings of the 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS), Las Vegas, NA, USA, 25–29 October 2020; pp. 5135–5142. [Google Scholar]
- Xu, W.; Zhang, F. Fast-lio: A fast, robust lidar-inertial odometry package by tightly-coupled iterated kalman filter. IEEE Robot. Autom. Lett. 2021, 6, 3317–3324. [Google Scholar] [CrossRef]
- Xu, W.; Cai, Y.; He, D.; Lin, J.; Zhang, F. Fast-lio2: Fast direct lidar-inertial odometry. IEEE Trans. Robot. 2022, 38, 2053–2073. [Google Scholar] [CrossRef]
- Bai, C.; Xiao, T.; Chen, Y.; Wang, H.; Zhang, F.; Gao, X. Faster-LIO: Lightweight tightly coupled LiDAR-inertial odometry using parallel sparse incremental voxels. IEEE Robot. Autom. Lett. 2022, 7, 4861–4868. [Google Scholar] [CrossRef]
- Yuan, C.; Xu, W.; Liu, X.; Hong, X.; Zhang, F. Efficient and probabilistic adaptive voxel mapping for accurate online lidar odometry. IEEE Robot. Autom. Lett. 2022, 7, 8518–8525. [Google Scholar] [CrossRef]
- Wu, C.; You, Y.; Yuan, Y.; Kong, X.; Zhang, Y.; Li, Q.; Zhao, K. VoxelMap++: Mergeable Voxel Mapping Method for Online LiDAR (-Inertial) Odometry. IEEE Robot. Autom. Lett. 2023, 9, 427–434. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; Yuan, C.; Liu, X.; Lin, J.; Li, R.; Zheng, C.; Zhou, B.; Liu, W.; Zhang, F. Voxel-SLAM: A Complete, Accurate, and Versatile LiDAR-Inertial SLAM System. arXiv 2024, arXiv:2410.08935. [Google Scholar]
- Cheng, J.; Zhang, L.; Chen, Q.; Hu, X.; Cai, J. A review of visual SLAM methods for autonomous driving vehicles. Eng. Appl. Artif. Intell. 2022, 114, 104992. [Google Scholar] [CrossRef]
- Park, S.; Schöps, T.; Pollefeys, M. Illumination change robustness in direct visual slam. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 4523–4530. [Google Scholar]
- Chou, C.-C.; Chou, C.-F. Efficient and accurate tightly-coupled visual-lidar slam. IEEE Trans. Intell. Transp. Syst. 2021, 23, 14509–14523. [Google Scholar] [CrossRef]
- Zuo, X.; Geneva, P.; Lee, W.; Liu, Y.; Huang, G. Lic-fusion: Lidar-inertial-camera odometry. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 5848–5854. [Google Scholar]
- Zuo, X.; Yang, Y.; Geneva, P.; Lv, J.; Liu, Y.; Huang, G.; Pollefeys, M. Lic-fusion 2.0: Lidar-inertial-camera odometry with sliding-window plane-feature tracking. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NA, USA, 25–29 October 2020; pp. 5112–5119. [Google Scholar]
- Shan, T.; Englot, B.; Ratti, C.; Rus, D. Lvi-sam: Tightly-coupled lidar-visual-inertial odometry via smoothing and mapping. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 5692–5698. [Google Scholar]
- Zheng, C.; Zhu, Q.; Xu, W.; Liu, X.; Guo, Q.; Zhang, F. Fast-livo: Fast and tightly-coupled sparse-direct lidar-inertial-visual odometry. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 4003–4009. [Google Scholar]
- Zheng, C.; Xu, W.; Zou, Z.; Hua, T.; Yuan, C.; He, D.; Zhou, B.; Liu, Z.; Lin, J.; Zhu, F. Fast-livo2: Fast, direct lidar-inertial-visual odometry. IEEE Trans. Robot. 2024, 41, 326–346. [Google Scholar] [CrossRef]
- Lin, J.; Zheng, C.; Xu, W.; Zhang, F. R2 LIVE: A Robust, Real-Time, LiDAR-Inertial-Visual Tightly-Coupled State Estimator and Mapping. EEE Robot. Autom. Lett. 2021, 6, 7469–7476. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, F. R 3 LIVE: A Robust, Real-time, RGB-colored, LiDAR-Inertial-Visual tightly-coupled state Estimation and mapping package. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 10672–10678. [Google Scholar]
- Lin, J.; Zhang, F. R3 LIVE++: A Robust, Real-time, Radiance Reconstruction Package with a Tightly-coupled LiDAR-Inertial-Visual State Estimator. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 11168–11185. [Google Scholar] [CrossRef]
- Zhang, H.; Du, L.; Bao, S.; Yuan, J.; Ma, S. LVIO-Fusion: Tightly-Coupled LiDAR-Visual-Inertial Odometry and Mapping in Degenerate Environments. IEEE Robot. Autom. Lett. 2024, 9, 3783–3790. [Google Scholar] [CrossRef]
- Sharp, G.C.; Lee, S.W.; Wehe, D. ICP registration using invariant features. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 90–102. [Google Scholar] [CrossRef]
- Piedade, V.; Miraldo, P. BANSAC: A Dynamic BAyesian Network for Adaptive SAmple Consensus. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 4–6 October 2023; pp. 3738–3747. [Google Scholar]
- Engel, J.; Koltun, V.; Cremers, D. Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 611–625. [Google Scholar] [CrossRef]
- De Berg, M. Computational Geometry: Algorithms and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Cai, Y.; Xu, W.; Zhang, F. ikd-tree: An incremental kd tree for robotic applications. arXiv 2021, arXiv:2102.10808. [Google Scholar]
- Yuan, C.; Liu, X.; Hong, X.; Zhang, F. Pixel-level extrinsic self calibration of high resolution lidar and camera in targetless environments. EEE Robot. Autom. Lett. 2021, 6, 7517–7524. [Google Scholar] [CrossRef]
- Lee, W.; Yang, Y.; Huang, G. Efficient multi-sensor aided inertial navigation with online calibration. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 5706–5712. [Google Scholar]
- Yin, J.; Li, A.; Li, T.; Yu, W.; Zou, D. M2dgr: A multi-sensor and multi-scenario slam dataset for ground robots. IEEE Robot. Autom. Lett. 2021, 7, 2266–2273. [Google Scholar] [CrossRef]
- Nguyen, T.-M.; Yuan, S.; Cao, M.; Lyu, Y.; Nguyen, T.H.; Xie, L. Ntu viral: A visual-inertial-ranging-lidar dataset, from an aerial vehicle viewpoint. Int. J. Robot. Res. 2022, 41, 270–280. [Google Scholar] [CrossRef]
- Zhang, Z.; Scaramuzza, D. A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 7244–7251. [Google Scholar]
Sequence | Features | Duration(s) | FAST-LIO2 | LIO-SAM | Voxelmap++ | LVI-SAM | R3LIVE | Our Method |
---|---|---|---|---|---|---|---|---|
door_01 | Outdoor to indoor to outdoor, long-term | 461 | 0.407 | 0.246 | 0.244 | 0.245 | 0.247 | 0.187 |
door_02 | Outdoor to indoor | 127 | 0.28 | 0.184 | 0.194 | 0.185 | 0.274 | 0.177 |
gate_01 | Dark, around gate | 172 | 0.174 | 0.635 | 0.163 | 0.142 | 0.228 | 0.11 |
gate_02 | Dark, loop back | 327 | 0.32 | 0.341 | 0.526 | 0.346 | 0.38 | 0.335 |
gate_03 | Day | 283 | 0.112 | 0.106 | 0.148 | 0.104 | 0.104 | 0.083 |
hall_01 | Random walk | 351 | 0.284 | 0.236 | 0.27 | 0.241 | 0.258 | 0.213 |
hall_02 | Random walk | 128 | 0.513 | 0.278 | 0.251 | 0.273 | 0.372 | 0.204 |
hall_03 | Random walk | 164 | 0.573 | 0.466 | 0.282 | 0.324 | 0.352 | 0.196 |
hall_04 | Random walk | 181 | 1.045 | 0.914 | 0.892 | 0.849 | 0.938 | 0.725 |
hall_05 | Random walk | 402 | 1.18 | 1.011 | 0.999 | 1.03 | 1.03 | 0.793 |
room_01 | Room, bright | 72 | 0.312 | 0.159 | 0.134 | 0.135 | 0.203 | 0.079 |
room_02 | Room, bright | 75 | 0.315 | 0.126 | 0.12 | 0.127 | 0.199 | 0.088 |
room_03 | Room, bright | 128 | 0.413 | 0.162 | 0.161 | 0.152 | 0.201 | 0.16 |
street_02 | Day, long-term | 1227 | 3.096 | 3.564 | fail | 3.46 | 2.834 | 3.943 |
street_03 | Night, back and forth, full speed | 354 | 0.177 | 0.508 | fail | 0.131 | 0.664 | 0.099 |
street_04 | Night, around lawn, loop back | 858 | 0.464 | 0.832 | fail | 0.924 | 0.302 | 0.551 |
street_05 | Night, straight line | 469 | 0.299 | 0.337 | 3.255 | 0.337 | 0.385 | 0.317 |
street_06 | Night, one turn | 494 | 0.364 | 0.386 | fail | 0.379 | 0.368 | 0.342 |
Mean | 348.5 | 0.574 | 0.583 | 1.628 | 0.521 | 0.519 | 0.478 |
Sequence | Features | Duration(S) | FAST-LIO2 | LIO-SAM | Voxelmap++ | FAST-LIVO | LVI-SAM | R3LIVE | Our Method |
---|---|---|---|---|---|---|---|---|---|
eee_01 | Outdoor, bright | 398.7 | 0.222 | 0.193 | 0.198 | 0.27 | 0.179 | 0.219 | 0.147 |
eee_02 | Outdoor, bright | 321.1 | 0.158 | 0.117 | 0.216 | 0.162 | 0.216 | 0.736 | 0.175 |
eee_03 | Outdoor, bright | 181.4 | 0.2208 | 0.19 | 0.214 | 0.278 | 0.246 | 0.207 | 0.227 |
nya_01 | Outdoor, square | 396.3 | 0.245 | 0.205 | 0.433 | 0.276 | 0.204 | 0.302 | 0.153 |
nya_02 | Outdoor, square | 428.7 | 0.231 | 0.181 | 0.176 | 0.237 | 0.182 | 0.222 | 0.131 |
nya_03 | Outdoor, square | 411.2 | 0.254 | 0.263 | 0.988 | 0.257 | 0.153 | 0.1677 | 0.227 |
sbs_01 | Indoor, low lighting | 354.2 | 0.265 | 0.312 | 0.207 | 0.531 | 0.206 | 0.662 | 0.239 |
sbs_02 | Indoor, low lighting | 373.3 | 0.253 | 0.203 | 0.397 | 0.326 | 0.204 | 2.063 | 0.237 |
sbs_03 | Indoor, low lighting | 389.3 | 0.249 | 0.277 | 0.167 | 0.223 | 0.268 | 0.152 | 0.126 |
Mean | 361.58 | 0.2331 | 0.212 | 0.333 | 0.284 | 0.206 | 0.5256 | 0.185 |
Sequence | FAST-LIVO | R3LIVE | Our Method | |||
---|---|---|---|---|---|---|
LIO | VIO | LIO | VIO | LIO | VIO | |
eee_01 | 24.41 | 8.74 | 26.23 | 29.73 | 20.4 | 15.26 |
eee_02 | 25.12 | 9.14 | 27.34 | 30.01 | 20.14 | 15.28 |
eee_03 | 24.22 | 8.63 | 25.51 | 29.68 | 18.33 | 13.95 |
nya_01 | 23.85 | 8.92 | 28.68 | 31.35 | 19.85 | 14.7 |
nya_02 | 24.08 | 9.33 | 29.31 | 31.94 | 21.08 | 15.22 |
nya_03 | 24.57 | 8.96 | 29.22 | 31.27 | 20.21 | 15.53 |
sbs_01 | 23.69 | 9.98 | 28.02 | 29.31 | 18.76 | 16.74 |
sbs_02 | 23.39 | 9.34 | 28.64 | 29.57 | 18.39 | 15.59 |
sbs_03 | 23.21 | 9.47 | 28.92 | 29.42 | 19.03 | 16.36 |
Mean | 24.06 | 9.17 | 27.99 | 30.25 | 20.39 | 15.8 |
Total | 33.23 | 58.24 | 36.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Bessaad, N.; Xu, H.; Zhu, X.; Li, H. Mergeable Probabilistic Voxel Mapping for LiDAR–Inertial–Visual Odometry. Electronics 2025, 14, 2142. https://doi.org/10.3390/electronics14112142
Wang B, Bessaad N, Xu H, Zhu X, Li H. Mergeable Probabilistic Voxel Mapping for LiDAR–Inertial–Visual Odometry. Electronics. 2025; 14(11):2142. https://doi.org/10.3390/electronics14112142
Chicago/Turabian StyleWang, Balong, Nassim Bessaad, Huiying Xu, Xinzhong Zhu, and Hongbo Li. 2025. "Mergeable Probabilistic Voxel Mapping for LiDAR–Inertial–Visual Odometry" Electronics 14, no. 11: 2142. https://doi.org/10.3390/electronics14112142
APA StyleWang, B., Bessaad, N., Xu, H., Zhu, X., & Li, H. (2025). Mergeable Probabilistic Voxel Mapping for LiDAR–Inertial–Visual Odometry. Electronics, 14(11), 2142. https://doi.org/10.3390/electronics14112142