Optoelectronic Devices Analytics: MachineLearning-Driven Models for Predicting the Performance of a Dye-Sensitized Solar Cell
Abstract
1. Introduction
2. Theoretical Framework
2.1. Equivalent Circuit Model of DSSCs
2.2. Support Vector Regression (SVR)
2.3. Random Forest Regression (RFR)
3. Methods
Model Training
4. Results and Discussion
4.1. SVR Prediction for Jsc and Pmax
4.2. RFR Prediction for Jsc and Pmax
4.3. Correlation Analysis of DSSC Variables
4.4. Shapley Additive exPlanation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ML | Machine learning |
DSSC | Dye-sensitized solar cell |
Jsc | Short-circuit current density |
Pmax | Maximum power |
Voc | Open circuit voltage |
SVR | Support vector regression |
RFR | Random Forest regression |
MAE | Mean absolute error |
R2 | R-squared |
SHAP | Sharpley Additive exPlanation |
References
- Mahmood, A.; Tang, A.; Wang, X.; Zhuo, E. First-principles theoretical designing of planar non-fullerene small molecular acceptors for organic solar cells: Manipulation of noncovalent interactions. Phys. Chem. 2019, 21, 2128–2139. [Google Scholar] [CrossRef] [PubMed]
- Abdellatif, S.O.; Josten, S.; Khalil, A.S.; Erni, D. Marlow FTransparency and diffused light efficiency of dye-sensitized solar cells: Tuning and a new figure of merit. IEEE J. Photovolt. 2020, 10, 522–530. [Google Scholar] [CrossRef]
- Grätzel, M. Photoelectrochemical Cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, N.; Bonomo, M.; Fagiolaari, L.; Barbero, N.; Gerbaldi, C.; Bella, F.; Barolo, C. Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chem. 2020, 22, 7168–7218. [Google Scholar] [CrossRef]
- Khir, H.; Pandey, A.K.; Saidur, R.; Ahmad, M.S.; Abd Rahim, N.; Dewika, M.; Samykano, M. Recent advancements and challenges in flexible low temperature dye sensitised solar cells. Sustain. Energy Technol. Assess. 2022, 53, 102745. [Google Scholar] [CrossRef]
- O’Regan, B.; Gratzelt, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal Ti02 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Kokkonen, M.; Talebi, P.; Zhou, J.; Asgari, S.; Soomro, S.A.; Elsehrawy, F.; Halme, J.; Ahmad, S.; Hagfeldt, A.; Hashmi, S.G. Advanced research trends in dye-sensitized solar cells. J. Mater. Chem. A 2021, 9, 10527–10545. [Google Scholar] [CrossRef]
- Bach, U.; Lupo, D.; Comte, P.; Moser, J.E.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998, 395, 583–585. [Google Scholar] [CrossRef]
- Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G. Electrolytes in dye-sensitized solar cells. Chem. Rev. 2015, 115, 2136–2173. [Google Scholar]
- Su’ait, M.S.; Rahman, M.Y.A.; Ahmad, A. Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Sol. Energy 2015, 115, 452–470. [Google Scholar] [CrossRef]
- Agrawal, A.; Siddiqui, S.A.; Soni, A.; Sharma, G.D. Advancements, frontiers and analysis of metal oxide semiconductor, dye, electrolyte and counter electrode of dye sensitized solar cell. Sol. Energy 2022, 233, 378–407. [Google Scholar]
- Feng, J.; Wang, H.; Ji, Y.; Li, Y. Molecular design and performance improvement in organic solar cells guided by high-throughput screening and machine learning. Nano Sel. 2021, 2, 1629–1641. [Google Scholar] [CrossRef]
- Bhatti, S.; Manzoor, H.U.; Michel, B.; Bonilla, R.S.; Abrams, R.; Zoha, A.; Hussain, S.; Ghannam, R. Revolutionizing low-cost solar cells with machine learning: A systematic review of optimization techniques. Adv. Energy Sustain. Res. 2023, 4, 2300004. [Google Scholar] [CrossRef]
- Kandregula, G.R.; Murugaiah, D.K.; Murugan, N.A.; Ramanujam, K. Data-driven approach towards identifying dyesensitizer molecules for higher power conversion efficiency in solar cells. New J. Chem. 2022, 46, 4395–4405. [Google Scholar] [CrossRef]
- Sutar, S.S.; Patil, S.M.; Kadam, S.J.; Kamat, R.K.; Kim, D.K.; Dongale, T.D. Analysis and Prediction of Hydrothermally Synthesized ZnO-Based Dye-Sensitized Solar Cell Properties Using Statistical and Machine-Learning Techniques. Acs Omega 2021, 6, 29982–29992. [Google Scholar] [CrossRef] [PubMed]
- Varga, Z.; Racz, E. Machine learning analysis on the performance of dye-sensitized solar cell—Thermoelectric generator hybrid system. Energies 2022, 15, 7222. [Google Scholar] [CrossRef]
- Xiao, F.; Saqib, M.; Razzaq, S.; Mubashir, T.; Tahir, M.H.; Moussa, I.M.; El-Ansary, H.O. Performance prediction of polymer-fullerene organic solar cells and data mining-assisted designing of new polymers. J. Mol. Model. 2023, 29, 270. [Google Scholar] [CrossRef]
- Ghanbari Motlagh, S.; Razi Astaraei, F.; Hajihosseini, M.; Madani, S. Application of Machine Learning Algorithms in Improving Nano-based Solar Cell Technology. J. AI Data Min. 2023, 11, 357–374. [Google Scholar]
- Alwadai, N.; Khan, S.U.D.; Elqahtani, Z.M.; Ud-Din Khan, S. Machine learning assisted prediction of power conversion efficiency of all-small molecule organic solar cells: A data visualization and statistical analysis. Molecules 2022, 27, 5905. [Google Scholar] [CrossRef]
- Khalifa, Z.; Abdellatif, S.; Fathi, A.; Abdullah, K.; Hassan, M. Investigating the variation in the optical properties of TiO2 thin-film utilized in bifacial solar cells using machine learning algorithm. J. Photonics Energy 2022, 12, 022202. [Google Scholar]
- Chalimourda, A.; Schölkopf, B.; Smola, A.J. Experimentally optimal ν in support vector regression for different noise models and parameter settings. Neural Netw. 2004, 17, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, Z.; Ramzan, M.F.; Ali, S.; Baseer, S.; Samad, A.; Husnain, M. Voting Classification-Based Diabetes Mellitus Prediction Using Hypertuned Machine-Learning Techniques. Mob. Inf. Syst. 2022, 2022, 6521532. [Google Scholar] [CrossRef]
- Han, L.; Koide, N.; Chiba, Y.; Islam, A.; Mitate, T. Modeling of an equivalent circuit for dye-sensitized solar cells: Improvement of efficiency of dye-sensitized solar cells by reducing internal resistance. Comptes Rendus Chim. 2006, 9, 645–651. [Google Scholar] [CrossRef]
- Li, J.; Li, R.; Jia, Y.; Zhang, Z. Prediction of I–V characteristic curve for photovoltaic modules based on convolutional neural network. Sensors 2020, 20, 2119. [Google Scholar] [CrossRef]
- Han, L.; Koide, N.; Chiba, Y.; Mitate, T. Modeling of an equivalent circuit for dyesensitized solar cells. Appl. Phys. Lett. 2004, 84, 2433–2435. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (Version 58). Prog. Photovolt. 2021, 29, 657–667. [Google Scholar] [CrossRef]
- Martin, A.; Green, Y.H.; Dunlop, E.D.; Levi, D.H.; HohlEbinger, J. Solar cell efficiency tables (version 52). Prog. Photovolt. 2018, 26, 427–436. [Google Scholar]
- Green, M.A. Accurate expressions for solar cell fill factors including series and shunt resistances. Appl. Phys. Lett. 2016, 108, 081111. [Google Scholar] [CrossRef]
- Green, M.; Dunlop, E.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 57). Prog. Photovolt. Res. Appl. 2021, 29, 3–15. [Google Scholar] [CrossRef]
- Deng, H.; Fannon, D.; Eckelman, M.J. Predictive modeling for US commercial building energy use: A comparison of existing statistical and machine learning algorithms using CBECS microdata. Energy and Buildings. Energy Build 2018, 163, 34–43. [Google Scholar] [CrossRef]
- Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar]
- Patle, A.; Chouhan, D.S. SVM kernel functions for classification. In Proceedings of the 2013 International Conference on Advances in Technology and Engineering (ICATE), Mumbai, India, 23–25 January 2013; pp. 1–9. [Google Scholar]
- Blanco, V.; Japón, A.; Puerto, J. Optimal arrangements of hyperplanes for SVM-based multiclass classification. Adv. Data Anal. Classif. 2020, 14, 175–199. [Google Scholar] [CrossRef]
- Fuad, M.; Hussain, M. Machine learning based modeling for solid oxide fuel cells power performance prediction. In Proceedings of the 6th International Conference Process System Engineering (PSE ASIA), Kuala Lumpur, Malaysia, 25–27 June 2013; pp. 19–24. [Google Scholar]
- Yu, P.S.; Chen, S.T.; Chang, I.F. Support vector regression for real-time flood stage forecasting. J. Hydrol. 2006, 328, 704–716. [Google Scholar] [CrossRef]
- Duan, H.; Huang, Y.; Mehra, R.K.; Song, P.; Ma, F. Study on Influencing Factors of Prediction Accuracy of Support Vector Machine (SVM) Model for NOx Emission of a Hydrogen Enriched Compressed Natural Gas Engine. Fuel 2018, 234, 954–964. [Google Scholar] [CrossRef]
- Gordon, D.; Norouzi, A.; Blomeyer, G.; Bedei, J.; Aliramezani, M.; Andert, J.; Koch, C.R. Support Vector Machine Based Emissions Modeling Using Particle Swarm Optimization for Homogeneous Charge Compression Ignition Engine. Int. J. Engine Res. 2021, 24, 536–551. [Google Scholar] [CrossRef]
- Wang, H.; Ji, C.; Shi, C.; Ge, Y.; Wang, S.; Yang, J. Development of Cyclic Variation Prediction Model of the Gasoline and N-Butanol Rotary Engines with Hydrogen Enrichment. Fuel 2021, 299, 120891. [Google Scholar] [CrossRef]
- Anyanwu, G.O.; Nwakanma, C.I.; Lee, J.M.; Kim, D.S. Optimization of RBF-SVM kernel using grid search algorithm for DDoS attack detection in SDN-based VANET. IEEE Internet Things J. 2022, 10, 8477–8490. [Google Scholar] [CrossRef]
- Pan, M.; Li, C.; Gao, R.; Huang, Y.; You, H.; Gu, T.; Qin, F. Photovoltaic power forecasting based on a support vector machine with improved ant colony optimization. J. Clean. Prod. 2020, 277, 123948. [Google Scholar] [CrossRef]
- Babar, B.; Luppino, L.T.; Boström, T.; Anfinsen, S.N. Random forest regression for improved mapping of solar irradiance at high latitudes. Sol. Energy 2020, 198, 81–92. [Google Scholar] [CrossRef]
- Greenaway, R.L.; Jelfs, K.E. Integrating computational and experimental workflows for accelerated organic materials discovery. Adv. Mater. 2021, 33, 2004831. [Google Scholar] [CrossRef] [PubMed]
- Boateng, E.Y.; Otoo, J.; Abaye, D.A. Basic tenets of classification algorithms K-nearest-neighbor, support vector machine, random forest and neural network: A review. J. Data Anal. Inf. Process. 2020, 8, 341–357. [Google Scholar] [CrossRef]
- Adusumilli, S.; Bhatt, D.; Wang, H.; Bhattacharya, P.; Devabhaktuni, V. A low-cost INS/GPS integration methodology based on random forest regression keywords: Artificial neural network global positioning system inertial navigation system random forest regression. Expert Syst. Appl. 2013, 40, 4653–4659. [Google Scholar] [CrossRef]
- Christudas, B.; Christudas, B. MySQL. In Practical Microservices Architectural Patterns: Event-Based Java Microservices with Spring Boot and Spring Cloud; SpringerLink: Berlin/Heidelberg, Germany, 2019; pp. 877–884. [Google Scholar]
- Šušter, I.; Ranisavljević, T. Optimization of MySQL database. J. Process Manag. New Technol. 2023, 11, 141–151. [Google Scholar] [CrossRef]
- Schwartz, B.; Zaitsev, P.; Tkachenko, V. High Performance MySQL: Optimization, Backups, and Replication; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2012. [Google Scholar]
- Machacek, J.; Prochazka, Z.; Drapela, J. System for measuring and collecting data from solar-cell systems. In Proceedings of the 2007 9th International Conference on Electrical Power Quality and Utilisation, Barcelona, Spain, 9–11 October 2007; pp. 1–4. [Google Scholar]
- Liu, J.; Huang, Q.; Ulishney, C.; Dumitrescu, C.E. Comparison of Random Forest and Neural Network in Modelling the Performance and Emissions of a Natural Gas Spark Ignition Engine. J. Energy Resour. Technol. 2022, 144, 032310. [Google Scholar] [CrossRef]
- Liu, J.; Ulishney, C.; Dumitrescu, C.E. Machine Learning Assisted Analysis of Heat Transfer Characteristics of a Heavy Duty Natural Gas Engine (No. 2022-01-0473); SAE Technical Paper; SAE International: Washington, DC, USA, 2022; pp. 1–8. [Google Scholar]
- Al-Anazi, A.; Gates, I.D. Support-vector regression for permeability prediction in a heterogeneous reservoir: A comparative study. SPE Reserv. Eval. Eng. 2010, 13, 485–495. [Google Scholar] [CrossRef]
- Shahpouri, S.; Norouzi, A.; Hayduk, C.; Rezaei, R.; Shahbakhti, M.; Koch, C.R. Hybrid Machine Learning Approaches and a Systematic Model Selection Process for Predicting Soot Emissions in Compression Ignition Engines. Energies 2021, 14, 7865. [Google Scholar] [CrossRef]
- Hao, D.; Mehra, R.K.; Luo, S.; Nie, Z.; Ren, X.; Fanhua, M. Experimental Study of Hydrogen Enriched Compressed Natural Gas (HCNG) Engine and Application of Support Vector Machine (SVM) on Prediction of Engine Performance at Specific Condition. Int. J. Hydrog. Energy 2019, 45, 5309–5325. [Google Scholar] [CrossRef]
- Wong, T.T.; Yeh, P.Y. Reliable accuracy estimates from k-fold cross validation. IEEE Trans. Knowl. Data Eng. 2019, 32, 1586–1594. [Google Scholar] [CrossRef]
- Nti, I.K.; Nyarko-Boateng, O.; Aning, J. Performance of machine learning algorithms with different K values in K-fold cross-validation. Int. J. Inf. Technol. Comput. Sci. 2021, 13, 61–71. [Google Scholar]
- Carrasco, M.; López, J.; Maldonado, S. Epsilon-nonparallel support vector regression. Appl. Intell. 2019, 49, 4223–4236. [Google Scholar] [CrossRef]
- Nourali, H.; Osanloo, M. Mining capital cost estimation using Support Vector Regression (SVR). Resour. Policy 2019, 62, 527–540. [Google Scholar] [CrossRef]
- Tanveer, M.; Rajani, T.; Rastogi, R.; Shao, Y.H.; Ganaie, M.A. Comprehensive review on twin support vector machines. Ann. Oper. Res. 2024, 339, 1223–1268. [Google Scholar] [CrossRef]
- Torres-Barrán, A.; Alonso, Á.; Dorronsoro, J.R. Regression tree ensembles for wind energy and solar radiation prediction. Neurocomputing 2019, 326, 151–160. [Google Scholar] [CrossRef]
- Imam, A.A.; Abusorrah, A.; Seedahmed, M.M.; Marzband, M. Accurate Forecasting of Global Horizontal Irradiance in Saudi Arabia: A Comparative Study of Machine Learning Predictive Models and Feature Selection Techniques. Mathematics 2024, 12, 2600. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Chen, X.; Yan, Y.; Yang, R.; Liu, Z.; Fu, J. The prediction of spark-ignition engine performance and emissions based on the SVR algorithm. Processes 2022, 10, 312. [Google Scholar] [CrossRef]
- Dey, K.; Kalita, K. Prediction performance analysis of neural network models for an electrical discharge turning process. Int. J. Interact. Des. Manuf. 2023, 17, 827–845. [Google Scholar] [CrossRef]
- Al-Dahidi, S.; Alrbai, M.; Alahmer, H.; Rinchi, B.; Alahmer, A. Enhancing solar photovoltaic energy production prediction using diverse machine learning models tuned with the chimp optimization algorithm. Sci. Rep. 2024, 14, 18583. [Google Scholar] [CrossRef] [PubMed]
- Tucci, M.; Piazzi, A.; Thomopulos, D. Machine Learning Models for Regional Photovoltaic Power Generation Forecasting with Limited Plant-Specific Data. Energies 2024, 17, 2346. [Google Scholar] [CrossRef]
- Benti, N.E.; Chaka, M.D.; Semie, A.G. Forecasting renewable energy generation with machine learning and deep learning: Current advances and future prospects. Sustainability 2023, 15, 7087. [Google Scholar] [CrossRef]
- Tan, H.; Qin, J.; Li, Z.; Wu, W. PSCNetlLong sequence time-series forecasting for photovoltaic power via period selection and cross-variable attention. Appl. Intell. 2025, 55, 1–7. [Google Scholar] [CrossRef]
- Mubarak, H.; Hammoudeh, A.; Ahmad, S.; Abdellatif, A.; Mekhilef, S.; Mokhlis, H.; Dupont, S. A hybrid machine learning method with explicit time encoding for improved Malaysian photovoltaic power prediction. J. Clean. Prod. 2023, 383, 134979. [Google Scholar] [CrossRef]
- Maddah, H.A. Machine learning analysis on performance of naturally-sensitized solar cells. Opt. Mater. 2022, 128, 112343. [Google Scholar] [CrossRef]
- Jena, A.; Mohanty, S.P.; Kumar, P.; Naduvath, J.; Gondane, V.; Lekha, P.; Das, J.; Narula, H.K.; Mallick, S.; Bhargava, P. Dye sensitized solar cells: A review. Trans. Indian Ceram. Soc. 2012, 71, 1–16. [Google Scholar] [CrossRef]
- Sarker, S.; Kim, D.M. Measurement and simulation of current-voltage relation in dye-sensitized solar cells with reduced graphene oxide at the counter electrodes. Sol. Energy 2018, 176, 656–662. [Google Scholar] [CrossRef]
- Sahu, S.; Patel, M.; Verma, A.K.; Tiwari, S. Analytical study of current density-voltage relation in dye-sensitized solar cells using equivalent circuit model. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing, Chennai, India, 1–2 August 2017; pp. 1489–1493. [Google Scholar]
- Cavallo, C.; Di Pascasio, F.; Latini, A.; Bonomo, M.; Dini, D. Nanostructured semiconductor materials for dye-sensitized solar cells. J. Nanomater. 2017, 1, 5323164. [Google Scholar] [CrossRef]
- Maçaira, J.; Andrade, L.; Mendes, A. Review on nanostructured photoelectrodes for next generation dye-sensitized solar cells. Renew. Sustain. Energy Rev. 2014, 27, 334–349. [Google Scholar] [CrossRef]
- Keppetipola, N.M.; Tada, K.; Olivier, C.; Hirsch, L.; Bessho, T.; Uchida, S.; Segawa, H.; Toupance, T.; Cojocaru, L. Comparative performance analysis of photo-supercapacitor based on silicon, dye-sensitized and perovskite solar cells: Towards indoor applications. Sol. Energy Mater. Sol. Cells 2022, 247, 111966. [Google Scholar] [CrossRef]
- Yun, S.; Qin, Y.; Uhl, A.R.; Vlachopoulos, N.; Yin, M.; Li, D.; Han, X.; Hagfeldt, A. New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy Environ. Sci. 2018, 11, 476–526. [Google Scholar] [CrossRef]
- Al-Alwani, M.A.; Mohamad, A.B.; Ludin, N.A.; Kadhum, A.A.; Sopian, K. Dye-sensitised solar cells: Development, structure, operation principles, electron kinetics, characterisation, synthesis materials and natural photosensitisers. Renew. Sustain. Energy Rev. 2016, 65, 183–213. [Google Scholar] [CrossRef]
- Patwari, J. Inversion of activity in DSSC for TiO2 and ZnO photo-anodes depending on the choice of sensitizer and carrier dynamics. J. Lumin. 2019, 207, 169–176. [Google Scholar] [CrossRef]
- Zheng, D.; Yang, X.; Čuček, L.; Wang, J.; Ma, T.; Yin, C. Revolutionizing Dye-sensitized Solar Cells with Nanomaterials for Enhanced Photoelectric Performance. J. Clean. Prod. 2024, 464, 142717. [Google Scholar] [CrossRef]
- Babar, F.; Mehmood, U.; Asghar, H.; Mehdi, M.H.; Khan, A.U.H.; Khalid, H.; ul Huda, N.; Fatima, Z. Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells: A comprehensive review. Renew. Sustain. Energy Rev. 2020, 129, 109919. [Google Scholar] [CrossRef]
- Thavasi, V.R.R.J.S.R.V. Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Mater. Sci. Eng. R Rep. 2009, 63, 81–99. [Google Scholar] [CrossRef]
- Omar, A.; Ali, M.S.; Abd Rahim, N. Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review. Sol. Energy 2020, 207, 1088–1121. [Google Scholar] [CrossRef]
- Kushwaha, S. A DSSC with an Efficiency of ∼10%: Fermi Level Manipulation Impacting the Electron Transport at the Photoelectrode-Electrolyte Interface. ChemistrySelect 2016, 1, 6179–6187. [Google Scholar] [CrossRef]
- Colella, S.; Orgiu, E.; Bruder, I.; Liscio, A.; Palermo, V.; Bruchmann, B.; Samorì, P.; Erk, P. Titanium Dioxide Mesoporous Electrodes for Solid-State Dye-Sensitized Solar Cells: Cross-Analysis of the Critical Parameters. Adv. Energy Mater. 2014, 4, 1301362. [Google Scholar] [CrossRef]
- Mashreghi, A.; Bahrami Moghadam, F. Effect of photoanode active area on photovoltaic parameters of dye sensitized solar cells through its effect on series resistance investigated by electrochemical impedance spectroscopy. J. Solid State Electrochem. 2016, 20, 1361–1368. [Google Scholar] [CrossRef]
- Liu, W.; Hu, L.; Dai, S.; Guo, L.; Jiang, N.; Kou, D. The effect of the series resistance in dye-sensitized solar cells explored by electron transport and back reaction using electrical and optical modulation techniques. Electrochim. Acta 2010, 55, 2338–2343. [Google Scholar] [CrossRef]
- Aftabuzzaman, M.; Sarker, S.; Lu, C.; Kim, H.K. In-depth understanding of the energy loss and efficiency limit of dye-sensitized solar cells under outdoor and indoor conditions. J. Mater. Chem. A 2021, 9, 24830–24848. [Google Scholar] [CrossRef]
(a) | ||||
SVR current density performance metrics (kernel type: linear) | ||||
Set Train Test | MAE 3.7562 3.8057 | R2 0.7149 0.5599 | ||
SVR power performance metrics (kernel type: linear) | ||||
Set Train Test | MAE 2.4852 2.4368 | R2 0.0895 0.3725 | ||
Difference between the experimental and predicted values | ||||
Parameters Short-circuit current density (mA/cm2) Maximum Power (mW) | Experiment 12.30 1.98 | SVR Model (kernel type: linear) 11.38 1.79 | Difference (%) 7.45 9.60 | |
(b) | ||||
SVR current density performance metrics (kernel type: RBF) | ||||
Set Train Test | MAE 1.5674 2.2528 | R2 0.8796 0.6460 | ||
SVR power performance metrics (kernel type: RBF) | ||||
Set Train Test | MAE 0.7060 1.0545 | R2 0.9017 0.7536 | ||
Difference between the experimental and predicted values | ||||
Parameters Short-circuit current density (mA/cm2) Maximum Power (mW) | Experiment 12.30 1.98 | SVR Model (kernel type: RBF) 12.45 1.91 | Difference (%) 1.22 3.54 |
RFR Current Density Performance Metrics | ||||
---|---|---|---|---|
Set Train Test | MAE 0.8441 0.5611 | R2 0.9252 0.9784 | ||
RFR Power performance metrics | ||||
Set Train Test | MAE 0.4445 0.3156 | R2 0.9308 0.9792 | ||
Difference between the experimental and predicted values | ||||
Parameters Short-circuit current density (mA/cm2) Maximum Power (mW) | Experiment 12.30 1.98 | RFR Model 12.39 1.96 | Difference (%) 0.73 1.01 |
Voltage (mV) | Current Density (mA/cm2) | Power (mW) | Resistance (Ω·cm2) | |
---|---|---|---|---|
count | 100 | 100 | 100 | 100 |
mean | 0.0005 | 11.5284 | −2.5707 | −0.0698 |
std | 586.0926 | 10.4680 | 5.3470 | 0.8161 |
min | −1000 | −11.8700 | −27.5030 | −7.3033 |
25% | −500 | 7.8758 | −3.8956 | −0.0762 |
50% | 0 | 12.3885 | −1.1410 | −0.0360 |
75% | 500 | 12.8270 | 1.0680 | 0.0451 |
max | 1000 | 55.0060 | 1.9826 | 2.5508 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onah, E.H.; Lethole, N.L.; Mukumba, P. Optoelectronic Devices Analytics: MachineLearning-Driven Models for Predicting the Performance of a Dye-Sensitized Solar Cell. Electronics 2025, 14, 1948. https://doi.org/10.3390/electronics14101948
Onah EH, Lethole NL, Mukumba P. Optoelectronic Devices Analytics: MachineLearning-Driven Models for Predicting the Performance of a Dye-Sensitized Solar Cell. Electronics. 2025; 14(10):1948. https://doi.org/10.3390/electronics14101948
Chicago/Turabian StyleOnah, Emeka Harrison, N. L. Lethole, and P. Mukumba. 2025. "Optoelectronic Devices Analytics: MachineLearning-Driven Models for Predicting the Performance of a Dye-Sensitized Solar Cell" Electronics 14, no. 10: 1948. https://doi.org/10.3390/electronics14101948
APA StyleOnah, E. H., Lethole, N. L., & Mukumba, P. (2025). Optoelectronic Devices Analytics: MachineLearning-Driven Models for Predicting the Performance of a Dye-Sensitized Solar Cell. Electronics, 14(10), 1948. https://doi.org/10.3390/electronics14101948