A 500 mVpp Input Range First-Order VCO-Based ADC with a Multi-Phase Quantizer for EEG Recording Front Ends
Abstract
:1. Introduction
2. Circuit Design
2.1. V/I Conversion Circuit
2.2. Basic Linear Model
2.3. VCO-Based ADC Quantization Process
2.4. Multi-Phase Quantizer Circuit
2.5. Architecture of the Proposed Circuit
3. Measurement Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, M.; Gao, X.; Gao, S.; Xu, D. Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans. Biomed. Eng. 2002, 49, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Lounasmaa, O.V.; Hamalainen, M.; Hari, R.; Salmelin, R. Information processing in the human brain: Magnetoencephalographic approach. Proc. Natl. Acad. Sci. USA 1996, 93, 8809–8815. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xu, J.; Chun, H.; Ballini, M.; Zhao, M.; Wu, X.; Van Hoof, C.; Van Helleputte, N. A 108 dB DR Hybrid-CTDT Direct-Digitalization ΔΣ-ΣM Front-End with 720mVpp Input Range and >300 mV Offset Removal for Wearable Bio-Signal Recording. In Proceedings of the 2019 Symposium on VLSI Circuits, Kyoto, Japan, 9–14 June 2019; pp. C296–C297. [Google Scholar]
- Chen, W.M.; Chiueh, H.; Chen, T.J.; Ho, C.L.; Jeng, C.; Ker, M.D.; Lin, C.-Y.; Huang, Y.-C.; Chou, C.-W.; Wu, C.Y.; et al. A Fully Integrated 8-Channel Closed-Loop Neural-Prosthetic CMOS SoC for Real-Time Epileptic Seizure Control. IEEE J. Solid State Circuits 2014, 49, 232–247. [Google Scholar] [CrossRef]
- Denison, T.; Consoer, K.; Santa, W.; Avestruz, A.-T.; Cooley, J.; Kelly, A. A 2 μW 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials. IEEE J. Solid State Circuits 2007, 42, 2934–2945. [Google Scholar] [CrossRef]
- Muller, R.; Gambini, S.; Rabaey, J.M. A 0.013 mm2 5 μW DC-coupled neural signal acquisition IC with 0.5V supply. In Proceedings of the 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 20–24 February 2011; pp. 302–304. [Google Scholar]
- Muller, R.; Le, H.P.; Li, W.; Ledochowitsch, P.; Gambini, S.; Bjorninen, T.; Koralek, A.; Carmena, J.M.; Maharbiz, M.M.; Alon, E.; et al. 24.1 A miniaturized 64-channel 225 μW wireless electrocorticographic neural sensor. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2011; pp. 412–413. [Google Scholar]
- Gao, H.; Walker, R.M.; Nuyujukian, P.; Makinwa, K.A.; Shenoy, K.V.; Murmann, B.; Meng, T.H. HermesE: A 96-Channel Full Data Rate Direct Neural Interface in 0.13 μm CMOS. IEEE J. Solid State Circuits 2012, 47, 1043–1055. [Google Scholar] [CrossRef]
- Verma, N.; Shoeb, A.; Guttag, J.V.; Chandrakasan, A.P. A Micro-power EEG acquisition SoC with integrated seizure detection processor for continuous patient monitoring. In Proceedings of the 2009 Symposium on VLSI Circuits, Kyoto, Japan, 15–17 June 2009; pp. 62–63. [Google Scholar]
- Yazicioglu, R.F.; Merken, P.; Puers, R.; Van Hoof, C. A 200 μW Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems. IEEE J. Solid State Circuits 2008, 43, 3025–3038. [Google Scholar] [CrossRef]
- Harrison, R.R.; Charles, C. A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid State Circuits 2003, 38, 958–965. [Google Scholar] [CrossRef]
- Huang, J.; Laiwalla, F.; Lee, J.; Cui, L.; Leung, V.; Nurmikko, A.; Mercier, P.P. A 0.01-mm2 Mostly Digital Capacitor-Less AFE for Distributed Autonomous Neural Sensor Nodes. IEEE Solid State Circuits Lett. 2018, 1, 162–165. [Google Scholar] [CrossRef]
- Lee, J.; Mok, E.; Huang, J.; Cui, L.; Lee, A.H.; Leung, V.; Mercier, P.; Shellhammer, S.; Larson, L.; Laiwalla, F.; et al. An Implantable Wireless Network of Distributed Microscale Sensors for Neural Applications. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; pp. 871–874. [Google Scholar]
- Fan, Q.; Sebastiano, F.; Huijsing, J.H.; Makinwa, K.A.A. A 1.8 μW 60 nV/√ Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes. IEEE J. Solid State Circuits 2011, 47, 1534–1543. [Google Scholar] [CrossRef]
- Yazicioglu, R.F.; Merken, P.; Puers, R.; Van Hoof, C. A 60 μW 60nV/radicHz readout front-end for portable biopotential acquisition systems. In Proceedings of the 2006 IEEE International Solid State Circuits Conference, San Francisco, CA, USA, 6–9 February 2006; pp. 109–118. [Google Scholar]
- Verma, N.; Shoeb, A.; Bohorquez, J.; Dawson, J.; Guttag, J.; Chandrakasan, A.P. A Micro-Power EEG Acquisition SoC with Integrated Feature Extraction Processor for a Chronic Seizure Detection System. IEEE J. Solid State Circuits 2010, 45, 804–816. [Google Scholar] [CrossRef]
- Kassiri, H.; Salam, M.T.; Pazhouhandeh, M.R.; Soltani, N.; Velazquez, J.L.P.; Carlen, P.; Genov, R. Rail-to-Rail-Input Dual-Radio 64-Channel Closed-Loop Neurostimulator. IEEE J. Solid State Circuits 2017, 52, 2793–2810. [Google Scholar] [CrossRef]
- Chandrakumar, H.; Marković, D. A 15.2-ENOB 5-kHz BW 4.5-μW Chopped CT ΔΣ-ADC for Artifact-Tolerant Neural Recording Front Ends. IEEE J. Solid State Circuits 2018, 53, 3470–3483. [Google Scholar] [CrossRef]
- Bang, J.-S.; Jeon, H.; Je, M.; Cho, G.-H. 6.5 μW 92.3DB-DR Biopotential-Recording Front-End with 360 MVPP Linear Input Range. In Proceedings of the 2018 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 18–22 June 2018; pp. 239–240. [Google Scholar]
- Kim, C.; Joshi, S.; Courellis, H.; Wang, J.; Miller, C.; Cauwenberghs, G. Sub-μ Vrms-Noise Sub-μW/Channel ADC-Direct Neural Recording with 200-mV/ms Transient Recovery Through Predictive Digital Autoranging. IEEE J. Solid State Circuits 2018, 53, 3101–3110. [Google Scholar] [CrossRef]
- Wu, R.; Chae, Y.; Huijsing, J.H.; Makinwa, K.A.A. A 20-b ± 40-mV Range Read-Out IC With 50-nV Offset and 0.04% Gain Error for Bridge Transducers. IEEE J. Solid State Circuits 2012, 47, 2152–2163. [Google Scholar] [CrossRef]
- Karkare, V.; Chandrakumar, H.; Rozgić, D.; Marković, D. Robust, reconfigurable, and power-efficient biosignal recording systems. In Proceedings of the 2014 IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 15–17 September 2014; pp. 1–8. [Google Scholar]
- Jiang, W.; Hokhikyan, V.; Chandrakumar, H.; Karkare, V.; Marković, D. A ±50-mV Linear-Input-Range VCO-Based Neural-Recording Front-End with Digital Nonlinearity Correction. IEEE J. Solid State Circuits 2017, 52, 173–184. [Google Scholar] [CrossRef]
- Lee, J.; Laiwalla, F.; Jeong, J.; Kilfoyle, C.; Larson, L.; Nurmikko, A.; Li, S.; Yu, S.; Leung, V.W. Wireless Power and Data Link for Ensembles of Sub-mm scale Implantable Sensors near 1GHz. In Proceedings of the 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland, OH, USA, 17–19 October 2018; pp. 1–4. [Google Scholar]
- Leung, V.W.; Lee, J.; Li, S.; Yu, S.; Kilfovle, C.; Larson, L.; Nurmikko, A.; Laiwalla, F. A CMOS Distributed Sensor System for High-Density Wireless Neural Implants for Brain-Machine Interfaces. In Proceedings of the 2018—IEEE 44th European Solid State Circuits Conference (ESSCIRC), Dresden, Germany, 3–6 September 2018; pp. 230–233. [Google Scholar]
- Jayaraj, A.; Danesh, M.; Chandrasekaran, S.T.; Sanyal, A. Highly Digital Second-Order ΔΣ VCO ADC. IEEE Trans. Circuits Syst. I 2019, 66, 2415–2425. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Richardson, A.G.; Lucas, T.H.; Van der Spiegel, J. Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 729–742. [Google Scholar] [CrossRef] [PubMed]
- Wendler, D.; De Dorigo, D.; Amayreh, M.; Bleitner, A.; Marx, M.; Willaredt, R.; Manoli, Y. A 0.0046-mm2 Two-Step Incremental Delta–Sigma Analog-to-Digital Converter Neuronal Recording Front End with 120-mVpp Offset Compensation. IEEE J. Solid State Circuits 2023, 58, 439–450. [Google Scholar] [CrossRef]
- Tu, C.-C.; Wang, Y.-K.; Lin, T.-H. A Low-Noise Area-Efficient Chopped VCO-Based CTDSM for Sensor Applications in 40-nm CMOS. IEEE J. Solid State Circuits 2017, 52, 2523–2532. [Google Scholar] [CrossRef]
- Wang, S.; Yang, X.; Wang, C.; Vilouras, A.; Lopez, C.M. A 0.00426 mm2 77.6-dB Dynamic Range VCO-Based CTDSM for Multi-Channel Neural Recording. Electronics 2022, 11, 3477. [Google Scholar] [CrossRef]
TBCAS [27] | JSSC [28] | JSSC [29] | JSSC [23] | LSSC [12] | Electronics [30] | This Work * | |
---|---|---|---|---|---|---|---|
Topology | IA+ADC | ADC | VCO-based | VCO-based | VCO-based | VCO-based | VCO-based |
Technology (nm) | 180 | 180 | 40 | 40 | 65 | 55 | 180 |
Die area (mm2) | 3.7 | 0.005/channel | 0.0145 | 0.135 | 0.01 | 0.004/channel | 0.225 |
Supply voltage (V) | 1.8 | 1.8 | 1.2(A)1(D) | 1.2(A)0.45(D) | 0.6 | 1.2(A)1(D) | 1.8(A)1(D) |
Power (W) | 56 | 14.6 | 17 | 7 | 3.2 | 13.75 | 17.1 |
Fs (kHz) | 1000 | 2720 | 4200 | 3 | 1 | 256 | |
BW (kHz) | 2.5 | 10 | 5 | 0.2 | 0.5 | 10 | 5 |
Input range (m) | rail-to-rail | 7.6 | 8 | 100 | <100 | 149 | 500 |
IRN (nV/sqrt(Hz)) | 55 | 48.8 | 32 | 367 | 98.4 | 142.9/69.7 | 122 |
SNDR (dB) | N/A | 57 | 61.85 | 75.2 | 51 | 52.7 | 62.1 |
SFDR (dB) | 56.6 | 62.1 | 70.8 | 79 | 62 | 59.38 | 65.1 |
DR (dB) | 59 | <50 | <50 | 77.4 | N/A | 77.6 | 55.2 |
* FOM (dB) | 137.5 | 145.3 | 146.5 | 149.6 | 132.9 | 141.3 | 146.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Hou, Y.; Wang, X.; Liu, Y. A 500 mVpp Input Range First-Order VCO-Based ADC with a Multi-Phase Quantizer for EEG Recording Front Ends. Electronics 2024, 13, 1483. https://doi.org/10.3390/electronics13081483
Liu W, Hou Y, Wang X, Liu Y. A 500 mVpp Input Range First-Order VCO-Based ADC with a Multi-Phase Quantizer for EEG Recording Front Ends. Electronics. 2024; 13(8):1483. https://doi.org/10.3390/electronics13081483
Chicago/Turabian StyleLiu, Wenhao, Ying Hou, Xiaosong Wang, and Yu Liu. 2024. "A 500 mVpp Input Range First-Order VCO-Based ADC with a Multi-Phase Quantizer for EEG Recording Front Ends" Electronics 13, no. 8: 1483. https://doi.org/10.3390/electronics13081483
APA StyleLiu, W., Hou, Y., Wang, X., & Liu, Y. (2024). A 500 mVpp Input Range First-Order VCO-Based ADC with a Multi-Phase Quantizer for EEG Recording Front Ends. Electronics, 13(8), 1483. https://doi.org/10.3390/electronics13081483