Pushing the Boundaries of Solar Panel Inspection: Elevated Defect Detection with YOLOv7-GX Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. YOLOv7-GX Model
2.2. Custom Convolution with GAM Attention Mechanism
2.3. Loss Function
2.4. Weighting Strategies
3. Results
3.1. Experimental Environment
3.2. Datasets
3.3. Evaluation Indicators
3.4. Experimental Results and Analysis
3.4.1. Comparison with Other Algorithms
3.4.2. Ablation Experiments
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, G.K. Solar power generation by PV (photovoltaic) technology: A review. Energy 2013, 53, 1–13. [Google Scholar] [CrossRef]
- Liao, K.C.; Lu, J.H. Using uav to detect solar module fault conditions of a solar power farm with ir and visual image analysis. Appl. Sci. 2021, 11, 1835. [Google Scholar] [CrossRef]
- Jiao, L.; Zhao, J. A survey on the new generation of deep learning in image processing. IEEE Access 2019, 7, 172231–172263. [Google Scholar] [CrossRef]
- Tao, H. Erasing-inpainting-based data augmentation using denoising diffusion probabilistic models with limited samples for generalized surface defect inspection. Mech. Syst. Signal Process. 2024, 208, 111082. [Google Scholar] [CrossRef]
- Tao, H.; Lu, M.; Hu, Z.; An, J. A gated multi-hierarchical feature fusion network for recognizing steel plate surface defects. Multimed. Syst. 2023, 29, 1347–1360. [Google Scholar] [CrossRef]
- Latoui, A.; Daachi, M.E.H. Real-time monitoring of partial shading in large PV plants using Convolutional Neural Network. Sol. Energy 2023, 253, 428–438. [Google Scholar] [CrossRef]
- Guo, M.; Xu, H. Research on hot spot defect detection of infrared thermal images based on Faster RCNN. Comput. Syst. Appl. 2019, 28, 265–270. [Google Scholar]
- Winston, D.P.; Murugan, M.S.; Elavarasan, R.M.; Pugazhendhi, R.; Singh, O.J.; Murugesan, P.; Gurudhachanamoorthy, M.; Hossain, E. Solar PV’s micro crack and hotspots detection technique using NN and SVM. IEEE Access 2021, 9, 127259–127269. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y.; Wu, L.; Cheng, S.; Lin, P. Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions. Energy Convers. Manag. 2019, 198, 111793. [Google Scholar] [CrossRef]
- Vega Díaz, J.J.; Vlaminck, M.; Lefkaditis, D.; Orjuela Vargas, S.A.; Luong, H. Solar panel detection within complex backgrounds using thermal images acquired by UAVs. Sensors 2020, 20, 6219. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bochkovskiy, A.; Liao HY, M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Li, H.; Li, J.; Wei, H.; Liu, Z.; Zhan, Z.; Ren, Q. Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles. arXiv 2022, arXiv:2206.02424. [Google Scholar]
- Zhang, Y.; Fang, X.; Guo, J.; Wang, L.; Tian, H.; Yan, K.; Lan, Y. CURI-YOLOv7: A lightweight YOLOv7tiny target detector for citrus trees from UAV remote sensing imagery based on embedded device. Remote Sens. 2023, 15, 4647. [Google Scholar] [CrossRef]
- Chen, G.; Cheng, R.; Lin, X.; Jiao, W.; Bai, D.; Lin, H. LMDFS: A lightweight model for detecting forest fire smoke in UAV images based on YOLOv7. Remote Sens. 2023, 15, 3790. [Google Scholar] [CrossRef]
- Yin, W.; Zhao, J.; Gang, X.; Zhao, Z.; Hu, X. PA-YOLO-Based Multifault Defect Detection Algorithm for PV Panels. Int. J. Photoenergy 2024, 2024, 6113260. [Google Scholar]
- Liu, Y.; Shao, Z.; Hoffmann, N. Global attention mechanism: Retain information to enhance channel-spatial interactions. arXiv 2021, arXiv:2112.05561. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Zheng, Z.; Wang, P.; Ren, D.; Liu, W.; Ye, R.; Hu, Q.; Zuo, W. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Trans. Cybern. 2021, 52, 8574–8586. [Google Scholar] [CrossRef] [PubMed]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [Google Scholar] [CrossRef]
- Mikołajczyk, A.; Grochowski, M. Data augmentation for improving deep learning in image classification problem. In Proceedings of the 2018 International Interdisciplinary PhD Workshop (IIPhDW), Swinoujscie, Poland, 9–12 May 2018; pp. 117–122. [Google Scholar]
- Zhao, L.; Zhi, L.; Zhao, C.; Zheng, W. Fire-YOLO: A small target object detection method for fire inspection. Sustainability 2022, 14, 4930. [Google Scholar] [CrossRef]
- Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv 2017, arXiv:1706.02677. [Google Scholar]
- Buckland, M.; Gey, F. The relationship between recall and precision. J. Am. Soc. Inf. Sci. 1994, 45, 12–19. [Google Scholar] [CrossRef]
Arithmetic | mAP@0.5 | R | Fracture | Hot Spot | Plant | Battery String |
---|---|---|---|---|---|---|
YOLOV5s | 83.4 | 77.3 | 96.1 | 60.7 | 83.7 | 93 |
YOLOX | 85.0 | 79.5 | 75 | 80 | 93 | 92 |
YOLOV7 | 88.4 | 81.5 | 98.4 | 70.1 | 90.3 | 94.9 |
YOLOV8 | 91.8 | 85.2 | 98.8 | 79.3 | 92.6 | 96.5 |
YOLOV7-GX | 94.8 | 91.2 | 99.5 | 88.3 | 94.1 | 97.5 |
GhostSlimFPN | GAM | XIOU | Weighting | mAP (%) |
---|---|---|---|---|
88.4 | ||||
√ | 91.4 | |||
√ | 92.7 | |||
√ | 91.5 | |||
√ | 92.4 | |||
√ | √ | √ | √ | 94.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhao, J.; Yan, Y.; Zhao, Z.; Hu, X. Pushing the Boundaries of Solar Panel Inspection: Elevated Defect Detection with YOLOv7-GX Technology. Electronics 2024, 13, 1467. https://doi.org/10.3390/electronics13081467
Wang Y, Zhao J, Yan Y, Zhao Z, Hu X. Pushing the Boundaries of Solar Panel Inspection: Elevated Defect Detection with YOLOv7-GX Technology. Electronics. 2024; 13(8):1467. https://doi.org/10.3390/electronics13081467
Chicago/Turabian StyleWang, Yin, Jingyong Zhao, Yihua Yan, Zhicheng Zhao, and Xiao Hu. 2024. "Pushing the Boundaries of Solar Panel Inspection: Elevated Defect Detection with YOLOv7-GX Technology" Electronics 13, no. 8: 1467. https://doi.org/10.3390/electronics13081467
APA StyleWang, Y., Zhao, J., Yan, Y., Zhao, Z., & Hu, X. (2024). Pushing the Boundaries of Solar Panel Inspection: Elevated Defect Detection with YOLOv7-GX Technology. Electronics, 13(8), 1467. https://doi.org/10.3390/electronics13081467