A Comprehensive Investigation of Lane-Changing Risk Recognition Framework of Multi-Vehicle Type Considering Key Features Based on Vehicles’ Trajectory Data
Abstract
:1. Introduction
2. Literature Review
2.1. Trajectory Dataset Used in LC Risk
2.2. LC Risk Prediction and Recognition
3. Methodology
3.1. Overall Framework
3.2. LC Feature Dataset Preparation
3.2.1. Extraction of LC Trajectory
3.2.2. LC Features
3.2.3. Calculation of Risk Indicators for LC
- Calculation of REL
- Calculation of RSL
- Calculation of the integrated REL and RSL REL for the entire LC progress
3.2.4. Labeling the Risk of LC
3.3. LC Features Importance Ranking Based on LightGBM
3.4. LC Risk Recognition Based on CNN-BiLSTM-Attention
3.4.1. CNN
3.4.2. BiLSTM
3.4.3. Attention Mechanism
3.4.4. CNN-BiLSTM-Attention
3.4.5. Evaluation Measures
4. Application and Discussion
4.1. HighD Dataset
4.2. Extraction and Processing of LC Data
4.2.1. Clustering Result of Vehicle Types
4.2.2. Extraction of LC Data
4.3. Labeling of the LC Risk Level
4.4. Selection of LC Risk Features
4.5. Comparison of LC Risk Recognition Model Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasolenko, O.; Chumachenko, V. Regularities of the Traffic Lane Change by the Driver When Interacting with Car-Obstacle. Transp. Technol. 2023, 2023, 1–11. [Google Scholar] [CrossRef]
- Liu, H.; Wu, K.; Fu, S.; Shi, H.; Xu, H. Predictive Analysis of Vehicular Lane Changes: An Integrated LSTM Approach. Appl. Sci. 2023, 13, 10157. [Google Scholar] [CrossRef]
- Reimer, B.; Donmez, B.; Lavallière, M.; Mehler, B.; Coughlin, J.F.; Teasdale, N. Impact of Age and Cognitive Demand on Lane Choice and Changing under Actual Highway Conditions. Accid. Anal. Prev. 2013, 52, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Ahn, S.; Monsere, C.M. Impact of Traffic Oscillations on Freeway Crash Occurrences. Accid. Anal. Prev. 2010, 42, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Farah, H.; Toledo, T. Passing Behavior on Two-Lane Highways. Transp. Res. Part F Traffic Psychol. Behav. 2010, 13, 355–364. [Google Scholar] [CrossRef]
- Krajewski, R.; Bock, J.; Kloeker, L.; Eckstein, L. The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2118–2125. [Google Scholar]
- Kurtc, V. Studying Car-Following Dynamics on the Basis of the HighD Dataset. Transp. Res. Rec. 2020, 2674, 813–822. [Google Scholar] [CrossRef]
- Xue, Q.; Wang, K.; Lu, J.J.; Xing, Y.; Gu, X.; Zhang, M. An Improved Risk Estimation Model of Lane Change Using Naturalistic Vehicle Trajectories. J. Transp. Saf. Secur. 2022, 15, 963–986. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Ni, D.; Ji, A.; Li, L.; Zou, Y. A Reproducible Approach to Merging Behavior Analysis Based on High Definition Map. arXiv 2023, arXiv:2303.11531. [Google Scholar]
- Jokhio, S.; Olleja, P.; Bärgman, J.; Yan, F.; Baumann, M. Analysis of Time-to-Lane-Change-Initiation Using Realistic Driving Data. IEEE Trans. Intell. Transport. Syst. 2023, 1–13. [Google Scholar] [CrossRef]
- Cao, X.; Young, W.; Sarvi, M.; Kim, I. Study of Mandatory Lane Change Execution Behavior Model for Heavy Vehicles and Passenger Cars. Transp. Res. Rec. 2016, 2561, 73–80. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Ni, D. Exploration of Lane-Changing Duration for Heavy Vehicles and Passenger Cars: A Survival Analysis Approach. arXiv 2021, arXiv:2108.05710. [Google Scholar]
- Zhang, Y.; Shi, X.; Zhang, S.; Abraham, A. A XGBoost-Based Lane Change Prediction on Time Series Data Using Feature Engineering for Autopilot Vehicles. IEEE Trans. Intell. Transport. Syst. 2022, 23, 19187–19200. [Google Scholar] [CrossRef]
- Chen, T.; Shi, X.; Wong, Y.D. Key Feature Selection and Risk Prediction for Lane-Changing Behaviors Based on Vehicles’ Trajectory Data. Accid. Anal. Prev. 2019, 129, 156–169. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Ni, D.; Zhang, Y. Comprehensive Survival Analysis of Lane-Changing Duration. Measurement 2021, 182, 109707. [Google Scholar] [CrossRef]
- Mahajan, V.; Katrakazas, C.; Antoniou, C. Crash Risk Estimation Due to Lane Changing: A Data-Driven Approach Using Naturalistic Data. IEEE Trans. Intell. Transport. Syst. 2022, 23, 3756–3765. [Google Scholar] [CrossRef]
- Benterki, A.; Boukhnifer, M.; Judalet, V.; Maaoui, C. Driving Intention Prediction and State Recognition on Highway. In Proceedings of the 2021 29th Mediterranean Conference on Control and Automation (MED), Puglia, Italy, 22 June 2021; pp. 566–571. [Google Scholar]
- Xue, Q.; Xing, Y.; Lu, J. An Integrated Lane Change Prediction Model Incorporating Traffic Context Based on Trajectory Data. Transp. Res. Part C Emerg. Technol. 2022, 141, 103738. [Google Scholar] [CrossRef]
- Park, H.; Oh, C.; Moon, J.; Kim, S. Development of a Lane Change Risk Index Using Vehicle Trajectory Data. Accid. Anal. Prev. 2018, 110, 1–8. [Google Scholar] [CrossRef]
- Xing, L.; He, J.; Abdel-Aty, M.; Cai, Q.; Li, Y.; Zheng, O. Examining Traffic Conflicts of up Stream Toll Plaza Area Using Vehicles’ Trajectory Data. Accid. Anal. Prev. 2019, 125, 174–187. [Google Scholar] [CrossRef]
- Wen, H.; Chen, Z. Modeling the Risks of Lane-Changing on Adjacent Sections of Tunnel Entrances. IEEE Access 2023, 11, 65312–65326. [Google Scholar] [CrossRef]
- Yang, M.; Wang, X.; Quddus, M. Examining Lane Change Gap Acceptance, Duration and Impact Using Naturalistic Driving Data. Transp. Res. Part C Emerg. Technol. 2019, 104, 317–331. [Google Scholar] [CrossRef]
- Toledo, T.; Koutsopoulos, H.N.; Ben-Akiva, M.E. Modeling Integrated Lane-Changing Behavior. Transp. Res. Rec. 2003, 1857, 30–38. [Google Scholar] [CrossRef]
- Wang, X.; Yang, M.; Hurwitz, D. Analysis of Cut-in Behavior Based on Naturalistic Driving Data. Accid. Anal. Prev. 2019, 124, 127–137. [Google Scholar] [CrossRef]
- Li, G.; Yang, Z.; Pan, Y.; Ma, J. Analysing and Modelling of Discretionary Lane Change Duration Considering Driver Heterogeneity. Transp. B Transp. Dyn. 2023, 11, 343–360. [Google Scholar] [CrossRef]
- Wang, C.; Xie, Y.; Huang, H.; Liu, P. A Review of Surrogate Safety Measures and Their Applications in Connected and Automated Vehicles Safety Modeling. Accid. Anal. Prev. 2021, 157, 106157. [Google Scholar] [CrossRef]
- Murata, E.; Usui, T.; Nogi, K.; Takahashi, H. Study on TTC Distribution When Approaching a Lead Vehicle; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2016; No. 2016-01–1452. [Google Scholar]
- Samson, C.J.R.; Hussain, Q.; Alhajyaseen, W.K.M. Analysis of Stopping Sight Distance (SSD) Parameters: A Review Study. Procedia Comput. Sci. 2022, 201, 126–133. [Google Scholar] [CrossRef]
- Fu, C.; Sayed, T. Comparison of Threshold Determination Methods for the Deceleration Rate to Avoid a Crash (DRAC)-Based Crash Estimation. Accid. Anal. Prev. 2021, 153, 106051. [Google Scholar] [CrossRef]
- Wu, J.; Wen, H.; Qi, W. A New Method of Temporal and Spatial Risk Estimation for Lane Change Considering Conventional Recognition Defects. Accid. Anal. Prev. 2020, 148, 105796. [Google Scholar] [CrossRef]
- Li, M.; Li, Z.; Xu, C.; Liu, T. Short-Term Prediction of Safety and Operation Impacts of Lane Changes in Oscillations with Empirical Vehicle Trajectories. Accid. Anal. Prev. 2020, 135, 105345. [Google Scholar] [CrossRef]
- Chen, T.; Shi, X.; Wong, Y.D.; Yu, X. Predicting Lane-Changing Risk Level Based on Vehicles’ Space-Series Features: A Pre-Emptive Learning Approach. Transp. Res. Part C Emerg. Technol. 2020, 116, 102646. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, Y.; Selpi; Zhang, Y.; Wu, L. Spatiotemporal Interaction Pattern Recognition and Risk Evolution Analysis During Lane Changes. IEEE Trans. Intell. Transp. Syst. 2023, 24, 6663–6673. [Google Scholar] [CrossRef]
- Huang, H.; Wang, J.; Fei, C.; Zheng, X.; Yang, Y.; Liu, J.; Wu, X.; Xu, Q. A Probabilistic Risk Assessment Framework Considering Lane-Changing Behavior Interaction. Sci. China Inf. Sci. 2020, 63, 190203. [Google Scholar] [CrossRef]
- Wang, H.; Jin, Y.; Zhang, Z. Risk Assessment Method for Lane-Changing Vehicles Based on Surrogate Safety Measure. In Proceedings of the 2nd International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2022), Guilin, China, 7–9 January 2022; Ye, X., Ed.; SPIE: Guilin, China, 2022; p. 8. [Google Scholar]
- Zhang, Y.; Chen, Y.; Gu, X.; Sze, N.N.; Huang, J. A Proactive Crash Risk Prediction Framework for Lane-Changing Behavior Incorporating Individual Driving Styles. Accid. Anal. Prev. 2023, 188, 107072. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Li, D. A Review of Vehicle Lane Change Research. Phys. A Stat. Mech. Its Appl. 2023, 626, 129060. [Google Scholar] [CrossRef]
- Shangguan, Q.; Fu, T.; Wang, J.; Fang, S.; Fu, L. A Proactive Lane-Changing Risk Prediction Framework Considering Driving Intention Recognition and Different Lane-Changing Patterns. Accid. Anal. Prev. 2022, 164, 106500. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Li, X.; Chen, B.; Hu, L.; Liu, J.; Du, R.; Li, Y. Dual Transformer Based Prediction for Lane Change Intentions and Trajectories in Mixed Traffic Environment. IEEE Trans. Intell. Transp. Syst. 2023, 24, 6203–6216. [Google Scholar] [CrossRef]
- Mahmud, S.S.; Ferreira, L.; Hoque, M.S.; Tavassoli, A. Application of Proximal Surrogate Indicators for Safety Evaluation: A Review of Recent Developments and Research Needs. IATSS Res. 2017, 41, 153–163. [Google Scholar] [CrossRef]
- Wood, J.S.; Donnell, E.T. Stopping Sight Distance and Available Sight Distance: New Model and Reliability Analysis Comparison. Transp. Res. Rec. 2017, 2638, 1–9. [Google Scholar] [CrossRef]
- Ozbay, K.; Yang, H.; Bartin, B.; Mudigonda, S. Derivation and Validation of New Simulation-Based Surrogate Safety Measure. Transp. Res. Rec. 2008, 2083, 105–113. [Google Scholar] [CrossRef]
- He, Z.; Qin, X.; Liu, P.; Sayed, M.A. Assessing Surrogate Safety Measures Using a Safety Pilot Model Deployment Dataset. Transp. Res. Rec. 2018, 2672, 1–11. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, H.; Li, Y.; Lee, J.; Long, K.; Gu, R.; Zhai, X. Modeling Accident Risks in Different Lane-Changing Behavioral Patterns. Anal. Methods Accid. Res. 2021, 30, 100159. [Google Scholar] [CrossRef]
- Mba, J.C.; Angaman, E.S.E.F. A K-Means Classification and Entropy Pooling Portfolio Strategy for Small and Large Capitalization Cryptocurrencies. Entropy 2023, 25, 1208. [Google Scholar] [CrossRef] [PubMed]
- Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-Means Clustering Algorithms: A Comprehensive Review, Variants Analysis, and Advances in the Era of Big Data. Inf. Sci. 2023, 622, 178–210. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Zhang, Z.; Rötting, M. Effects of Feature Selection on Lane-Change Maneuver Recognition: An Analysis of Naturalistic Driving Data. JICV 2019, 1, 85–98. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Izquierdo, R.; Quintanar, A.; Parra, I.; Fernandez-Llorca, D.; Sotelo, M.A. Experimental Validation of Lane-Change Intention Prediction Methodologies Based on CNN and LSTM. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 3657–3662. [Google Scholar]
- Zhang, Y.; Zhang, S.; Luo, R. Lane Change Intent Prediction Based on Multi-Channel CNN Considering Vehicle Time-Series Trajectory. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 8 October 2022; pp. 287–292. [Google Scholar]
- Tang, L.; Wang, H.; Zhang, W.; Mei, Z.; Li, L. Driver Lane Change Intention Recognition of Intelligent Vehicle Based on Long Short-Term Memory Network. IEEE Access 2020, 8, 136898–136905. [Google Scholar] [CrossRef]
- Yu, D.; Lee, H.; Kim, T.; Hwang, S.-H. Vehicle Trajectory Prediction with Lane Stream Attention-Based LSTMs and Road Geometry Linearization. Sensors 2021, 21, 8152. [Google Scholar] [CrossRef]
- Wang, K.; Hou, J.; Zeng, X. Lane-Change Intention Prediction of Surrounding Vehicles Using BiLSTM-CRF Models with Rule Embedding. In Proceedings of the 2022 China Automation Congress (CAC), Xiamen, China, 25 November 2022; pp. 2764–2769. [Google Scholar]
- Li, Z.-N.; Huang, X.-H.; Mu, T.; Wang, J. Attention-Based Lane Change and Crash Risk Prediction Model in Highways. IEEE Trans. Intell. Transport. Syst. 2022, 23, 22909–22922. [Google Scholar] [CrossRef]
- Yang, S.; Chen, Y.; Cao, Y.; Wang, R.; Shi, R.; Lu, J. Lane Change Trajectory Prediction Based on Spatiotemporal Attention Mechanism. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 8 October 2022; pp. 2366–2371. [Google Scholar]
- Scheel, O.; Nagaraja, N.S.; Schwarz, L.; Navab, N.; Tombari, F. Attention-Based Lane Change Prediction. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 8655–8661. [Google Scholar]
- Yan, J.; Peng, Z.; Yin, H.; Wang, J.; Wang, X.; Shen, Y.; Stechele, W.; Cremers, D. Trajectory Prediction for Intelligent Vehicles Using Spatial-attention Mechanism. IET Intell. Transp. Syst. 2020, 14, 1855–1863. [Google Scholar] [CrossRef]
- Wu, Z.; Liang, K.; Liu, D.; Zhao, Z. Driver Lane Change Intention Recognition Based on Attention Enhanced Residual-MBi-LSTM Network. IEEE Access 2022, 10, 58050–58061. [Google Scholar] [CrossRef]
- Scheel, O.; Nagaraja, N.S.; Schwarz, L.; Navab, N.; Tombari, F. Recurrent Models for Lane Change Prediction and Situation Assessment. IEEE Trans. Intell. Transport. Syst. 2022, 23, 17284–17300. [Google Scholar] [CrossRef]
- Powers, D.M.W. Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
Notation | Explanation |
---|---|
Basic Features | |
L, W | Length and width of the vehicles |
X, Y | Lateral and longitudinal position of the vehicles |
vx, vy | Lateral and longitudinal velocity of the vehicles |
v | Velocity of the vehicles, |
ax, ay | Lateral and longitudinal acceleration of the vehicles |
a | Acceleration of the vehicles, |
jerkx, jerky, | Time derivative on lateral and longitudinal acceleration, |
jerk | Time derivative on acceleration |
θ | Steering angle, |
Interaction Features | |
ΔX, ΔY | The lateral and longitudinal distance between TV and surrounding vehicles |
ΔD | The distance between TV and surrounding vehicles |
Δvx, Δvy | The lateral and longitudinal velocity difference between TV and surrounding vehicles |
Δv | The velocity difference between TV and surrounding vehicles |
Δax, Δay | The lateral and longitudinal acceleration difference between TV and surrounding vehicles |
Δa | The acceleration difference between TV and surrounding vehicles |
Statistical Features | |
Mean | The mean value of the above variables |
Max, Min | Maximum and minimum value of the above variables |
p25, p50, p75 | 0.25 quantiles, 0.5 quantiles, 0.75 quantiles of the above variables |
Notation | Explanation |
---|---|
Frame | The current frame. |
id | The vehicle’s ID in this track. |
x, y | The x and y positions of the vehicle’s bounding box. |
Width, height | The length and width of the vehicle. |
Vx, Vy | The longitudinal and lateral velocity of the vehicle. |
ax, ay | The longitudinal and lateral acceleration of the vehicle. |
precedingId followingId | The ID of the preceding and following vehicles in the same lane. The value is set to 0, if no preceding or following vehicle exists. |
leftPrecedingId leftAlongsideId leftFollowingId | The ID of the preceding, adjacent to, and following vehicles in the left lane. The value is set to 0 if no vehicle exists. |
rightPrecedingId rightAlongsideId rightFollowingId | The ID of the preceding, adjacent, and following vehicles in the right lane. The value is set to 0 if no vehicle exists. |
laneId | The IDs start at 1 and are assigned in ascending order. |
Clustering Center | Light Vehicle | Medium Vehicle | Heavy Vehicle |
---|---|---|---|
Length (m) | 4.79 | 9.90 | 17.17 |
Width (m) | 1.93 | 2.47 | 2.50 |
Number | 88,503 | 7923 | 14,087 |
. | Light Vehicle | Medium Vehicle | Heavy Vehicle |
---|---|---|---|
LLC | 3779 | 227 | 285 |
RLC | 4781 | 236 | 250 |
Total LC | 8561 | 463 | 535 |
Ratio | 9.94% | 6.01% | 3.92% |
Type | Level 1 | Level 2 | Level 3 | ||||
---|---|---|---|---|---|---|---|
LLC | RLC | LLC | RLC | LLC | RLC | ||
Light Vehicle | Center | (0.21, 0.46) | (0.65, 0.16) | (0.24, 0.92) | (0.34, 0.88) | (0.80, 0.87) | (0.93, 0.83) |
Number | 1012 | 722 | 2277 | 2122 | 490 | 1937 | |
Medium Vehicle | Center | (0.34, 0.47) | (0.43, 0.34) | (0.37, 0.92) | (0.32, 0.86) | (0.94, 0.91) | (0.95, 0.74) |
Number | 37 | 86 | 83 | 84 | 107 | 66 | |
Heavy Vehicle | Center | (0.39, 0.21) | (0.46, 0.34) | (0.37, 0.92) | (0.39, 0.93) | (0.97, 0.93) | (0.81, 0.85) |
Number | 16 | 24 | 83 | 171 | 186 | 55 |
Features | R | P | F1 | |
---|---|---|---|---|
LLC-Light Vehicle | All features | 94.93 | 94.91 | 94.92 |
Importance ≠ 0 features | 95.59 | 95.60 | 95.61 | |
200 features | 95.20 | 95.12 | 95.13 | |
100 features | 96.02 | 96.02 | 96.03 | |
50 features | 92.68 | 92.68 | 92.70 | |
LLC-Medium Vehicle | All features | 96.89 | 96.85 | 96.87 |
Importance ≠ 0 features | 96.77 | 96.85 | 96.86 | |
200 features | 95.84 | 96.28 | 96.03 | |
100 features | 97.40 | 97.42 | 97.42 | |
50 features | 96.17 | 96.28 | 96.21 | |
LLC-Heavy Vehicle | All features | 95.82 | 95.53 | 95.58 |
Importance ≠ 0 features | 98.05 | 97.77 | 97.89 | |
200 features | 98.17 | 98.32 | 98.30 | |
100 features | 97.33 | 97.21 | 97.04 | |
50 features | 95.73 | 95.53 | 95.73 | |
RLC-Light Vehicle | All features | 95.51 | 95.49 | 95.48 |
Importance ≠ 0 features | 94.99 | 95.00 | 94.99 | |
200 features | 95.64 | 95.62 | 95.61 | |
100 features | 95.75 | 95.75 | 95.75 | |
50 features | 95.11 | 95.09 | 95.10 | |
RLC-Medium Vehicle | All features | 95.14 | 95.17 | 95.15 |
Importance ≠ 0 features | 97.15 | 97.10 | 97.11 | |
200 features | 97.92 | 97.91 | 97.91 | |
100 features | 97.18 | 97.26 | 97.23 | |
50 features | 96.13 | 96.14 | 96.15 | |
RLC-Heavy Vehicle | All features | 94.97 | 95.06 | 94.98 |
Importance ≠ 0 features | 97.89 | 97.94 | 97.91 | |
200 features | 96.02 | 95.88 | 96.05 | |
100 features | 98.81 | 98.77 | 98.75 | |
50 features | 96.29 | 96.30 | 96.24 |
Risk Level | CNN | LSTM | BiLSTM | CNN-BiLSTM- Attention | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | P | F1 | R | P | F1 | R | P | F1 | R | P | F1 | ||
All features | Level 1 | 91.33 | 86.60 | 88.90 | 79.78 | 63.64 | 70.80 | 75.92 | 74.96 | 75.44 | 95.77 | 94.69 | 95.23 |
Level 2 | 82.37 | 87.13 | 84.68 | 55.69 | 58.62 | 57.12 | 56.79 | 62.76 | 59.62 | 94.22 | 94.94 | 94.58 | |
Level 3 | 89.07 | 88.92 | 88.99 | 56.27 | 70.56 | 62.6 | 69.45 | 64 | 66.61 | 94.79 | 95.10 | 94.94 | |
Overall | 87.59 | 87.54 | 87.53 | 63.91 | 63.83 | 63.51 | 67.39 | 67.29 | 67.23 | 94.93 | 94.91 | 94.92 | |
Impt. ≠ 0 features | Level 1 | 93.74 | 92.26 | 92.99 | 85.23 | 74.26 | 79.37 | 84.27 | 79.30 | 81.71 | 96.27 | 94.89 | 95.58 |
Level 2 | 90.02 | 94.75 | 92.32 | 65.52 | 63.25 | 64.37 | 69.90 | 77.37 | 73.44 | 95.86 | 94.85 | 95.35 | |
Level 3 | 94.21 | 90.99 | 92.58 | 61.41 | 75.34 | 67.67 | 79.10 | 76.28 | 77.66 | 94.65 | 97.17 | 95.89 | |
Overall | 92.66 | 92.63 | 92.63 | 70.72 | 70.68 | 70.47 | 77.76 | 77.68 | 77.61 | 95.59 | 95.60 | 95.61 | |
200 features | Level 1 | 94.06 | 94.36 | 94.21 | 86.36 | 77.75 | 81.82 | 84.75 | 72.83 | 78.34 | 96.74 | 94.00 | 95.35 |
Level 2 | 91.26 | 93.6 | 92.42 | 68.80 | 69.23 | 69.01 | 68.02 | 69.54 | 68.77 | 93.44 | 95.87 | 94.64 | |
Level 3 | 94.21 | 91.56 | 92.87 | 66.08 | 73.79 | 69.72 | 66.24 | 77.15 | 71.28 | 95.41 | 95.41 | 95.41 | |
Overall | 93.18 | 93.16 | 93.17 | 73.75 | 73.70 | 73.52 | 73.00 | 72.96 | 72.80 | 95.20 | 95.12 | 95.13 | |
100 features | Level 1 | 91.97 | 91.53 | 91.75 | 86.03 | 77.68 | 81.64 | 82.50 | 79.57 | 81.01 | 96.89 | 95.71 | 96.29 |
Level 2 | 89.70 | 86.86 | 88.26 | 70.67 | 70.12 | 70.40 | 71.45 | 71.01 | 71.23 | 95.21 | 95.65 | 95.43 | |
Level 3 | 87.30 | 90.80 | 89.02 | 68.97 | 78 | 73.21 | 72.99 | 76.30 | 74.61 | 95.97 | 96.78 | 96.37 | |
Overall | 89.66 | 89.66 | 89.68 | 75.22 | 75.19 | 75.08 | 75.65 | 75.61 | 75.62 | 96.02 | 96.05 | 96.03 | |
50 features | Level 1 | 89.09 | 85.78 | 87.40 | 84.91 | 74.72 | 79.49 | 78.81 | 76.00 | 77.38 | 93.42 | 93.87 | 93.64 |
Level 2 | 82.52 | 81.38 | 81.95 | 64.12 | 71.11 | 67.43 | 68.17 | 64.26 | 66.16 | 93.15 | 90.33 | 91.72 | |
Level 3 | 80.87 | 85.40 | 83.07 | 65.92 | 68.33 | 67.10 | 63.34 | 70.36 | 66.67 | 91.46 | 94.04 | 92.73 | |
Overall | 84.16 | 84.15 | 84.14 | 71.65 | 71.58 | 71.34 | 70.11 | 70.09 | 70.07 | 92.68 | 92.68 | 92.70 |
CNN | LSTM | BiLSTM | CNN-BiLSTM-Attention | |||||
---|---|---|---|---|---|---|---|---|
Params. | P (%) | Params. | P (%) | Params. | P (%) | Params. | P (%) | |
All features | 33.9 K | 87.54 | 16.5 K | 63.83 | 33.1 K | 67.29 | 22.4 M | 94.91 |
Impt. ≠ 0 features | 11.9 K | 92.63 | 5.5 K | 70.68 | 11.1 K | 77.68 | 7.4 M | 95.60 |
200 features | 10.8 K | 93.16 | 4.9 K | 73.70 | 9.9 K | 72.96 | 6.6 M | 95.12 |
100 features | 6 K | 89.66 | 2.5 K | 75.19 | 5.1 K | 75.61 | 3.3 M | 96.05 |
50 features | 3.6 K | 84.15 | 1.3 K | 71.58 | 2.7 K | 70.09 | 1.7 M | 92.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Liu, W. A Comprehensive Investigation of Lane-Changing Risk Recognition Framework of Multi-Vehicle Type Considering Key Features Based on Vehicles’ Trajectory Data. Electronics 2024, 13, 1097. https://doi.org/10.3390/electronics13061097
Zheng L, Liu W. A Comprehensive Investigation of Lane-Changing Risk Recognition Framework of Multi-Vehicle Type Considering Key Features Based on Vehicles’ Trajectory Data. Electronics. 2024; 13(6):1097. https://doi.org/10.3390/electronics13061097
Chicago/Turabian StyleZheng, Liyuan, and Weiming Liu. 2024. "A Comprehensive Investigation of Lane-Changing Risk Recognition Framework of Multi-Vehicle Type Considering Key Features Based on Vehicles’ Trajectory Data" Electronics 13, no. 6: 1097. https://doi.org/10.3390/electronics13061097
APA StyleZheng, L., & Liu, W. (2024). A Comprehensive Investigation of Lane-Changing Risk Recognition Framework of Multi-Vehicle Type Considering Key Features Based on Vehicles’ Trajectory Data. Electronics, 13(6), 1097. https://doi.org/10.3390/electronics13061097