An Optimization Design Method for Dual-Band and Wideband Patch Filtering Power Dividers
Abstract
:1. Introduction
2. Design of the Fundamental Models
2.1. Fundamental Model of the Dual-Band FPD
2.2. Fundamental Model of the Wideband FPD
3. Design of the Optimization Process
3.1. The Modified PSO Algorithm
3.2. Fitness Functions Definitions
Algorithm 1 Fitness function for fine optimization. |
Input: Simulated , of the agent Output: fitness of the agent:
|
4. Validation Results and Discussion
4.1. Run Results of the Optimization Process
4.2. Fabrication and Measured Results
4.3. Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mao, C.X.; Zhang, Y.; Zhang, X.Y.; Xiao, P.; Wang, Y.; Gao, S. Filtering antennas: Design methods and recent developments. IEEE Microw. Mag. 2021, 22, 52–63. [Google Scholar] [CrossRef]
- Jin, J.Y.; Liao, S.; Xue, Q. Design of filtering-radiating patch antennas with tunable radiation nulls for high selectivity. IEEE Trans. Antennas Propag. 2018, 66, 2125–2130. [Google Scholar] [CrossRef]
- Cheng, G.S.; Zhou, J.; Huang, B.Q.; Yang, L.X.; Huang, Z.X. Compact low-profile wideband filtering an-tenna without additional filtering structure. IEEE Antennas Wirel. Propag. Lett. 2023, in press.
- Hu, H.T.; Chan, C.H. Substrate-integrated-waveguide-fed wideband filtering antenna for millimeter-wave applications. IEEE Trans. Antennas Propag. 2021, 69, 8125–8135. [Google Scholar] [CrossRef]
- Sajadi, A.; Sheikhi, A.; Abdipour, A.A. simulation, and implementation of dual-band filtering power divider based on terminated coupled lines. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 2487–2491. [Google Scholar] [CrossRef]
- Wen, P.; Ma, Z.W.; Liu, H.W.; Zhu, S.S.; Ren, B.P.; Song, Y.; Wang, X.L.; Ohira, M. Dual-band filtering power divider using dual-resonance resonators with ultrawide stopband and good isolation. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 101–103. [Google Scholar] [CrossRef]
- Deng, P.H.; Dai, L.C. Unequal Wilkinson power dividers with favorable selectivity and high-isolation using coupled-line filter transformers. IEEE Trans. Microw. Theory Tech. 2012, 60, 1520–1529. [Google Scholar] [CrossRef]
- Li, Y.C.; Xue, Q.; Zhang, X.Y. Single-and dual-band power dividers integrated with bandpass filters. IEEE Trans. Microw. Theory Tech. 2012, 61, 69–76. [Google Scholar] [CrossRef]
- Wang, K.X.; Zhang, X.Y.; Hu, B.J. Gysel power divider with arbitrary power ratios and filtering responses using coupling structure. IEEE Trans. Microw. Theory Tech. 2014, 62, 431–440. [Google Scholar] [CrossRef]
- Cheong, P.; Lai, K.I.; Tam, K.W. Compact Wilkinson power divider with simultaneous bandpass response and harmonic suppression. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 24 May 2010. [Google Scholar]
- Luo, M.; Xu, X.; Tang, X.H.; Zhang, Y.H. A Compact Balanced-to-Balanced Filtering Gysel Power Divider Using λg/2 Resonators and Short-Stub-Loaded Resonator. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 645–647. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, X.; Yang, J. Dual-band microstrip filtering power divider based on one single multimode resonator. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 891–893. [Google Scholar] [CrossRef]
- Mohammed, A.M.; Wang, Y. Four-way waveguide power dividers with integrated filtering function. In Proceedings of the 2015 European Microwave Conference (EuMC), Paris, France, 8 September 2015. [Google Scholar]
- Liu, B.G.; Lyu, Y.P.; Zhu, L. Compact square substrate integrated waveguide filtering power divider with wideband isolation. IEEE Microw. Wirel. Compon. Lett. 2020, 31, 109–112. [Google Scholar] [CrossRef]
- Chi, P.L.; Chen, Y.M.; Yang, T. Single-layer dual-band balanced substrate-integrated waveguide filtering power divider for 5G millimeter-wave applications. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 585–588. [Google Scholar] [CrossRef]
- Pradhan, N.C.; Subramanian, K.S.; Barik, R.K.; Cheng, Q.S. Design of compact substrate integrated wave-guide based triple-and quad-band power dividers. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 365–368. [Google Scholar] [CrossRef]
- Barik, R.K.; Cheng, Q.S.; Pradhan, N.C.; Sholampettai, S.K. A Compact SIW Power Divider for Dual-Band Applications. Radioengineering 2020, 29, 94–100. [Google Scholar] [CrossRef]
- Zhu, L.; Tan, B.C.; Quek, S.J. Miniaturized dual-mode bandpass filter using inductively loaded cross-slotted patch resonator. IEEE Microw. Wirel. Compon. Lett. 2005, 15, 22–24. [Google Scholar]
- Hong, J.S.; Li, S. Theory and experiment of dual-mode microstrip triangular patch resonators and filters. IEEE Trans. Microw. Theory Tech. 2004, 52, 1237–1243. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, J.; Zhu, L.; Zhang, G.; Wu, W. Design of a new balanced-to-balanced filtering power divider based on square patch resonator. IEEE Trans. Microw. Theory Tech. 2018, 66, 5280–5289. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, J.; Zhu, L.; Wu, W. Design of balanced-to-balanced filtering power divider with arbitrary power division ratio based on circular patch resonator. IET Microw. Antennas Propag. 2020, 14, 253–259. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, S.; Yu, X.; Wu, Y.L.; Liu, Y.N. Design of a wideband filtering power divider with good in-band and out-of-band isolations. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 29, e21728. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Q.; Liu, J.; Sun, Q.; Zhang, G.; Tang, W. A New Wideband Filtering Power Divider Based on Rectangle Patch Resonator With Compact Size. In Proceedings of the 2021 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Chongqing, China, 16 November 2021. [Google Scholar]
- Zhang, Q.; Zhang, G.; Liu, Z.; Chen, W.; Tang, W. Dual-band filtering power divider based on a single circular patch resonator with improved bandwidths and good isolation. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3411–3415. [Google Scholar] [CrossRef]
- Villegas, F.J.; Cwik, T.; Rahmat-Samii, Y.; Manteghi, M. A parallel electromagnetic genetic-algorithm optimization (EGO) application for patch antenna design. IEEE Trans. Antennas Propag. 2004, 52, 2424–2435. [Google Scholar] [CrossRef]
- Cen, L.; Yu, Z.L.; Ser, W.; Cen, W. Linear aperiodic array synthesis using an improved genetic algorithm. IEEE Trans. Antennas Propag. 2011, 60, 895–902. [Google Scholar] [CrossRef]
- Ruan, X.; Chan, C.H. Free-Form Filters Designed Using Binary Optimization Algorithm. IEEE Trans. Compon. Packag. Manuf. Technol. 2023, in press. [CrossRef]
- Chen, W.; Zhang, G.; Liu, S.C.; Yang, J.Q. Synthesis of multi-port filtering power divider for mixed topology using matrix optimization. IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 176–180. [Google Scholar] [CrossRef]
- Garg, R. Microstrip Antenna Design Handbook; Artech House: Norwood, MA, USA, 2001. [Google Scholar]
- Robinson, J.; Rahmat-Samii, Y. Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 2004, 52, 397–407. [Google Scholar] [CrossRef]
- Gysel, U.H. A new N-way power divider/combiner suitable for high-power applications. In Proceedings of the 1975 IEEE-MTT-S International Microwave Symposium, Palo Alto, CA, USA, 12 May 1975. [Google Scholar]
References | Frequencies (GHz) | BWs 1 | Topology | Size () | TZs 2 | IL 3 (dB) |
---|---|---|---|---|---|---|
[24] | 2.6/5.7 | 25%/10% | Patch | 0.72 × 0.72 | 3 | 0.6/1.2 |
[5] | 4.11/6.56 | 4.2%/1.2% | Microstrip | 0.3 × 0.45 | 3 | 0.8/1.8 |
[6] | 2.3/3.5 | 1.2%/1.5% | Microstrip | 0.37 × 0.28 | 4 | 1.2/1.5 |
This work | 2.4/6 | 27%/21% | Patch | 0.65 × 0.68 | 6 | 0.75/1 |
References | Operating Frequency (GHz) | Topology | Size () | TZs | IL (dB) |
---|---|---|---|---|---|
[22] | 1.1–1.9 (56%) | Microstrip | 0.64 × 0.32 | 4 | 1.4 |
[21] | 1.7–1.9 (12%) | Patch | 0.45 × 0.45 | 3 | 1.43 |
[20] | 1.7–1.9 (12%) | Patch | 0.55 × 0.55 | 4 | 1.02 |
This work | 3.7–5.25 (35%) | Patch | 0.52 × 0.42 | 4 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Z.; Wang, K.; Ruan, X.; Sun, G. An Optimization Design Method for Dual-Band and Wideband Patch Filtering Power Dividers. Electronics 2024, 13, 528. https://doi.org/10.3390/electronics13030528
Du Z, Wang K, Ruan X, Sun G. An Optimization Design Method for Dual-Band and Wideband Patch Filtering Power Dividers. Electronics. 2024; 13(3):528. https://doi.org/10.3390/electronics13030528
Chicago/Turabian StyleDu, Zhitao, Kaixu Wang, Xuexuan Ruan, and Guanghua Sun. 2024. "An Optimization Design Method for Dual-Band and Wideband Patch Filtering Power Dividers" Electronics 13, no. 3: 528. https://doi.org/10.3390/electronics13030528
APA StyleDu, Z., Wang, K., Ruan, X., & Sun, G. (2024). An Optimization Design Method for Dual-Band and Wideband Patch Filtering Power Dividers. Electronics, 13(3), 528. https://doi.org/10.3390/electronics13030528