A Mobility Handover Decision Method Based on Multi-Topology
Abstract
:1. Introduction
- We introduce a mobile communication system based on multi-topology and provide a detailed analysis of the dynamic allocation problem for mobile data flows. The problem is modeled as a multi-topology selection task aimed at minimizing both average packet transmission delay and average packet loss rate;
- We formulate the dual problem of the original optimization and propose an algorithm to solve it, incorporating the principles of the greedy algorithm. This method enables rapid path switching for mobility support. It addresses varying bandwidth and delay requirements of data flows and achieves a near-optimal solution;
- We implemented and tested the proposed MHMT method using the Mininet [3] network simulator. Simulation results show that MHMT achieves a near-optimal solution with significantly lower time overhead compared to the genetic algorithm, requiring only 7 milliseconds versus 4.7 s for 14 data flows. Compared to ECMP, random selection, and single-path methods, MHMT outperforms in terms of average packet transmission delay, QoS satisfaction rate, average packet loss rate, and throughput. Specifically, with 14 data flows, MHMT reduces average packet delay by 45%, packet loss rate by 66%, and increases throughput by 126% compared to ECMP.
2. Related Work
2.1. Mobility Support Methods
2.2. Multipath Routing in Non-Mobility Contexts
3. System and Scenario Description
3.1. Architecture Overview
3.2. Problem Description and Formulation
4. Method and Algorithms
4.1. The Dual Problem of the Original Problem
4.2. Algorithm Description and Complexity Analysis
Algorithm 1 Multi-topology selection algorithm |
|
|
|
5. Evaluation
5.1. Simulation Setup
5.1.1. Network Parameters
5.1.2. Flow Parameters
5.2. Simulation Results and Analyses
5.2.1. Average Packet Transmission Delay
5.2.2. QoS Satisfaction Rate
5.2.3. Average Packet Loss Rate
5.2.4. Handover Delay Analysis
5.2.5. Algorithm Runtime Analysis
5.2.6. Throughput
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- James, J.H.; Chen, B.; Garrison, L. Implementing voip: A voice transmission performance progress report. IEEE Commun. Mag. 2004, 42, 36–41. [Google Scholar] [CrossRef]
- Xing, M.; Deng, H.; Han, R. ICN-Oriented Mobility Support Method for Dynamic Allocation of Mobile Data Flows. Electronics 2023, 12, 1701. [Google Scholar] [CrossRef]
- Mininet. Available online: http://mininet.org/ (accessed on 26 November 2024).
- Perkins, C.E. Mobile ip. IEEE Commun. Mag. 1997, 35, 84–99. [Google Scholar] [CrossRef]
- Perkins, C.; Johnson, D.; Arkko, J. Mobility Support in IPv6. RFC 6275. Available online: https://www.rfc-editor.org/rfc/rfc6275 (accessed on 26 November 2024).
- Soliman, H.; Castelluccia, C.; ElMalki, K.; Bellier, L. Hierarchical Mobile IPv6 (HMIPv6) Mobility Management. RFC 5380. Available online: https://www.rfc-editor.org/rfc/rfc5380 (accessed on 26 November 2024).
- Gundavelli, S.; Leung, K.; Devarapalli, V.; Chowdhury, K.; Patil, B. Proxy Mobile IPv6. RFC 5213. Available online: https://www.rfc-editor.org/rfc/rfc5213 (accessed on 26 November 2024).
- Hermans, F.; Ngai, E.; Gunningberg, P. Mobile Sources in an Information-Centric Network with Hierarchical Names: An Indirection Approach. In Proceedings of the 7th Scandinavian Networking Conference (SNCNW), Linköping, Sweden, 13–14 June 2011. [Google Scholar]
- Zhang, Y.; Zhang, H.; Zhang, L. Kite: A Mobility Support Scheme for NDN. In Proceedings of the ACM Conference on Information-Centric Networking, Paris, France, 24–26 September 2014; pp. 125–136. [Google Scholar]
- Kim, D.; Ko, Y.B. On-demand anchor-based mobility support method for named data networking. In Proceedings of the 2017 19th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Republic of Korea, 30 March 2017; pp. 19–23. [Google Scholar]
- Augé, J.; Carofiglio, G.; Grassi, G.; Muscariello, L.; Pau, G.; Zeng, X. Map-me: Managing anchor-less producer mobility in content-centric networks. IEEE Trans. Netw. Serv. Manag. 2018, 15, 596–610. [Google Scholar] [CrossRef]
- Hussaini, M.; Naeem, M.A.; Kim, B.S. Opmss: Optimal producer mobility support solution for named data networking. Appl. Sci. 2021, 11, 4064. [Google Scholar] [CrossRef]
- Raychaudhuri, D.; Nagaraja, K.; Venkataramani, A. Mobilityfirst: A robust and trustworthy mobility-centric architecture for the future internet. ACM Sigmobile Mob. Comput. Commun. Rev. 2012, 16, 2–13. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, J.; Hu, B.; Zhou, X.; Song, W.; Li, M.; Tian, Z. Hierarchical Name-based Routing for Content Provider Mobility in ICN. In Proceedings of the 2023 International Wireless Communications and Mobile Computing (IWCMC), Marrakesh, Morocco, 21 July 2023; pp. 941–946. [Google Scholar]
- Gao, S.; Zhang, H. Scalable mobility management for content sources in Named Data Networking. In Proceedings of the 2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2016; pp. 79–84. [Google Scholar]
- Azgin, A.; Ravindran, R.; Chakraborti, A.; Wang, G.Q. Seamless producer mobility as a service in information centric networks. In Proceedings of the 3rd ACM Conference on Information-Centric Networking, Kyoto, Japan, 26–28 September 2016; pp. 243–248. [Google Scholar]
- Ford, A.; Raiciu, C.; Handley, M.; Bonaventure, O. TCP Extensions for Multipath Operation with Multiple Addresses. RFC 6824. Available online: https://www.rfc-editor.org/rfc/rfc6824.html (accessed on 26 November 2024).
- Hopps, C. Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992. Available online: https://www.rfc-editor.org/rfc/rfc2992.html (accessed on 26 November 2024).
- Zhou, J.; Tewari, M.; Zhu, M.; Kabbani, A.; Poutievski, L.; Singh, A.; Vahdat, A. WCMP: Weighted cost multipathing for improved fairness in data centers. In Proceedings of the Ninth European Conference on Computer Systems, Amsterdam, The Netherlands, 14–16 April 2014; pp. 1–14. [Google Scholar]
- Tague, P.; Nabar, S.; Ritcey, J.A.; Poovendran, R. Jamming-aware traffic allocation for multiple-path routing using portfolio selection. IEEE/ACM Trans. Netw. 2010, 19, 184–194. [Google Scholar] [CrossRef]
- Lee, P.P.; Misra, V.; Rubenstein, D. Distributed algorithms for secure multipath routing in attack-resistant networks. IEEE/ACM Trans. Netw. 2007, 15, 1490–1501. [Google Scholar] [CrossRef]
- Pei, J.; Hong, P.; Xue, K.; Li, D. Resource aware routing for service function chains in SDN and NFV-enabled network. IEEE Trans. Serv. Comput. 2018, 14, 985–997. [Google Scholar] [CrossRef]
- Kamboj, P.; Pal, S.; Bera, S.; Misra, S. QoS-aware multipath routing in software-defined networks. IEEE Trans. Netw. Sci. Eng. 2022, 10, 723–732. [Google Scholar] [CrossRef]
- Psenak, P.; Mirtorabi, S.; Roy, A.; Nguyen, L.; Pillay-Esnault, P. Multi-topology (MT) routing in OSPF. RFC 4915. Available online: https://www.rfc-editor.org/rfc/rfc4915.html (accessed on 26 November 2024).
- Menth, M.; Martin, R. Network resilience through multi-topology routing. In Proceedings of the Fifth International Workshop on Design of Reliable Communication Networks, Naples, Italy, 16–19 October 2005; pp. 271–277. [Google Scholar]
- Bhandari, K.S.; Ra, I.H.; Cho, G. Multi-topology based QoS-differentiation in RPL for internet of things applications. IEEE Access 2020, 8, 96686–96705. [Google Scholar] [CrossRef]
- Demir, Ö.K.; Cevher, S. Multi-Topology Routing based traffic optimization for IEEE 802.1 Time Sensitive Networking. Real-Time Syst. 2023, 59, 123–159. [Google Scholar] [CrossRef]
- Pop, P.; Raagaard, M.L.; Craciunas, S.S.; Steiner, W. Design optimisation of cyber-physical distributed systems using IEEE time-sensitive networks. IET Cyber-Phys. Syst. Theory Appl. 2016, 1, 86–94. [Google Scholar] [CrossRef]
- Mehmood, G.; Khan, M.Z.; Bashir, A.K.; Al-Otaibi, Y.D.; Khan, S. An efficient QoS-based multi-path routing scheme for smart healthcare monitoring in wireless body area networks. Comput. Electr. Eng. 2023, 109, 108517. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.; You, J.; Sun, P. SEANet: Architecture and Technologies of an On-site, Elastic, Autonomous Network. J. Netw. New Media 2020, 9, 1–8. [Google Scholar]
- Papagiannaki, K.; Moon, S.; Fraleigh, C.; Thiran, P.; Diot, C. Measurement and analysis of single-hop delay on an IP backbone network. IEEE J. Sel. Areas Commun. 2003, 21, 908–921. [Google Scholar] [CrossRef]
- Ramaswamy, R.; Weng, N.; Wolf, T. Characterizing network processing delay. In Proceedings of the IEEE Global Telecommunications Conference, 2004, GLOBECOM’04, Dallas, TX, USA, 29 November–3 December 2004; pp. 1629–1634. [Google Scholar]
- Censor, Y. Pareto optimality in multiobjective problems. Appl. Math. Optim. 1977, 4, 41–59. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004; ISBN 978-0-521-83378-3. [Google Scholar]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998; ISBN 978-0-262-53237-6. [Google Scholar]
- Ryu Controller. Available online: https://github.com/faucetsdn/ryu (accessed on 2 December 2024).
- Varga, A.; Hornig, R. An overview of the OMNeT++ simulation environment. In Proceedings of the 1st International ICST Conference on Simulation Tools and Techniques for Communications, Networks and Systems, Marseille, France, 3–7 March 2008. [Google Scholar]
- Riley, G.F.; Henderson, T.R. The ns-3 Network Simulator. In Modeling and Tools for Network Simulation; Springer: Berlin/Heidelberg, Germany, 2010; pp. 15–34. [Google Scholar]
Symbol | Description |
---|---|
(input parameter) | |
(input parameter) | |
, in the range of 0–1 (input parameter) | |
(mapping delay constraint to hop constraint) (input parameter) | |
) (input parameter) | |
(input parameter) | |
Total number of topologies (input parameter) | |
Total number of flows to be allocated (input parameter) | |
Flow Number | Parameters |
---|---|
Flow(1,2.4,3), Flow(2,1.6,4), Flow(3,3.2,2), Flow(4,1.6,3), Flow(5,2.4,4), Flow(6,3.2,4) | |
Flow(1,1.6,4), Flow(2,2.4,4), Flow(3,2.4,3), Flow(4,3.2,2), Flow(5,2.4,4), Flow(6,2.4,3), Flow(7,1.6,4), Flow(8,3.2,4) | |
10 | Flow(1,3.2,3), Flow(2,3.2,4), Flow(3,2.4,3), Flow(4,1.6,4), Flow(5,3.2,4), Flow(6,1.6,4), Flow(7,1.6,3), Flow(8,1.6,3), Flow(9,3.2,3), Flow(10,3.2,4) |
12 | Flow(1,1.6,2), Flow(2,2.4,2), Flow(3,2.4,4), Flow(4,3.2,2), Flow(5,1.6,4), Flow(6,2.4,4), Flow(7,1.6,4), Flow(8,1.6,2), Flow(9,3.2,3), Flow(10,1.6,4), Flow(11,2.4,4), Flow(12,3.2,4) |
14 | Flow(1,1.6,3), Flow(2,2.4,4), Flow(3,2.4,4), Flow(4,1.6,3), Flow(5,3.2,4), Flow(6,2.4,4), Flow(7,3.2,4), Flow(8,3.2,3), Flow(9,3.2,2), Flow(10,1.6,4), Flow(11,1.6,2), Flow(12,3.2,4), Flow(13,2.4,2), Flow(14,1.6,4) |
Method | Strength | QoS-Aware | Complexity |
---|---|---|---|
MHMT (Proposed) | Rapid path switching, low complexity, High QoS satisfaction | Yes | |
MPTCP | Optimizes resource utilization | No | High, due to packet reordering |
ECMP | Simple, well-established | No | |
WCMP | Better load balancing compared to ECMP | No | |
Tague et al. | Improves throughput under heavy congestion | No | |
Lee et al. | Optimizes traffic allocation | No | High, due to the recomputing of routing |
Pei et al. (Dynamic SFC) | Addresses varying QoS for each flow | Yes | High, due to the recomputing of routing |
Kamboj et al. | Addresses varying QoS for each subflow | Yes | High, due to packet reordering |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Deng, H.; Han, R. A Mobility Handover Decision Method Based on Multi-Topology. Electronics 2024, 13, 4777. https://doi.org/10.3390/electronics13234777
Zhang C, Deng H, Han R. A Mobility Handover Decision Method Based on Multi-Topology. Electronics. 2024; 13(23):4777. https://doi.org/10.3390/electronics13234777
Chicago/Turabian StyleZhang, Chi, Haojiang Deng, and Rui Han. 2024. "A Mobility Handover Decision Method Based on Multi-Topology" Electronics 13, no. 23: 4777. https://doi.org/10.3390/electronics13234777
APA StyleZhang, C., Deng, H., & Han, R. (2024). A Mobility Handover Decision Method Based on Multi-Topology. Electronics, 13(23), 4777. https://doi.org/10.3390/electronics13234777