Data-Driven Bus Trajectory Tracking Based on Feedforward–Feedback Model-Free Adaptive Iterative Learning Control
Abstract
:1. Introduction
- (1)
- Based on the full-format dynamic linearization (FFDL) method, an iterative dynamic linearization method of FFDL is extended and proposed.
- (2)
- Based on the FFDL-MFAC algorithm, combined with the design index of the FFDL iterative dynamic linearization method, a full-form model-free adaptive iterative learning control (FFDL-MFAILC) scheme is proposed.
- (3)
- To enhance the applicability of the FFDL-MFAILC scheme in complex public transportation environments and bolster the robustness of its control method, the scheme is integrated with ADRC and structured into a hierarchical control system. The FFDL-MFAILC feedforward and feedback control (FFDL-MFAFILC) algorithm is designed.
2. Problem Formulation
2.1. Longitudinal Vehicle Model
2.2. Description Along the Iteration Domain and Assumptions
3. Controller Design
3.1. Full-Format Dynamic Linearization Method for Iterative Domains
3.2. Iterative Controller Design
3.3. Modification for Feedforward–Feedback Structure
4. Simulation Results
4.1. Trajectory Tracking Without Disturbance
4.2. Trajectory Tracking with Disturbance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Notations
Symbol | Meaning |
desired trajectory | |
input of the controller | |
output of the controller | |
pseudo partial derivative | |
estimated pseudo partial derivative | |
state values of displacement \velocity \disturbance | |
observations of | |
state matrix of extended state observer | |
adjustable parameters of controllers | |
input of the feedforward part | |
input of the feedback part |
References
- Elkosantini, S.; Darmoul, S. Intelligent Public Transportation Systems: A review of architectures and enabling technologies. In Proceedings of the 2013 International Conference on Advanced Logistics and Transport, Sousse, Tunisia, 29–31 May 2013. [Google Scholar]
- Lian, Z.; Shi, P.; Lim, C.; Yuan, X. Fuzzy-Model-Based Lateral Control for Networked Autonomous Vehicle Systems Under Hybrid Cyber-Attacks. IEEE Trans. Cybern. 2023, 53, 2600–2609. [Google Scholar] [CrossRef]
- Khodayari, A.; Ghaffari, A.; Ameli, S.; Flahatgar, J. A historical review on lateral and longitudinal control of autonomous vehicle motions. In Proceedings of the 2010 International Conference on Mechanical and Electrical Technology, Singapore, 10–12 September 2010. [Google Scholar]
- Qin, Z.; Chen, L.; Hu, M.; Chen, X. A lateral and longitudinal dynamics control framework of autonomous vehicles based on multi-parameter joint estimation. IEEE Trans. Veh. Technol. 2022, 71, 5837–5852. [Google Scholar] [CrossRef]
- Shladover, S.; Desoer, C.; Hedrick, J. Automated vehicle control develop-ments in the PATH program. IEEE Trans. Veh. Technol. 2002, 40, 114–130. [Google Scholar] [CrossRef]
- Guo, J.; Li, K.; Luo, Y. Review on the research of motion control for intelligent vehicles. J. Automot. 2016, 7, 151–159. [Google Scholar]
- Wang, Z.; Bian, Y.; Shladover, S. A survey on cooperative longitudinal motion control of multiple connected and automated vehicles. IEEE Intell. Transp. Syst. 2019, 12, 4–24. [Google Scholar] [CrossRef]
- Hu, P.; Guo, J.; Li, L. A robust longitudinal sliding-mode controller design for autonomous ground vehicle based on fuzzy logic. Int. J. Veh. Auton. 2013, 11, 368–383. [Google Scholar] [CrossRef]
- Jullierme, E.; Guilherme, A.; Reinaldo, M. Longitudinal model identification and velocity control of an autonomous car. IEEE Trans. Intell. Transp. Syst. 2015, 16, 777–786. [Google Scholar]
- Hakgo, K.; Dongwook, K.; Insoo, S. Time-varying parameter adaptive vehicle speed control. IEEE Trans. Veh. Technol. 2015, 65, 581–588. [Google Scholar]
- Liang, H.; Chong, K.; No, T. Vehicle longitudinal brake control using variable parameter sliding control. Control Eng. Pract. 2003, 11, 403–411. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Q.; Zhang, Y. The Effect of ADRC on Vehicle Braking Performance. J. Electr. Eng. Technol. 2020, 15, 705–712. [Google Scholar] [CrossRef]
- Bartlomiejczyk, M. Driving performance indicators of electric bus driving technique: Naturalistic driving data multicriterial analysis. IEEE Trans. Intell. Transp. Syst. 2019, 20, 1442–1451. [Google Scholar] [CrossRef]
- Hou, Z. Parameter Identification, Adaptive Control and Model-Free Learning Adaptive Control for Nonlinear Systems; Northeastern University: Shenyang, China, 1994. [Google Scholar]
- Hou, Z.; Jin, S. Model-Free Adaptive Control-Theory and Application; Science Press: Beijing, China, 2013. [Google Scholar]
- Abbasi Moshaei, A.R.; Mohammadi Moghaddam, M.; Dehghan Neistanak, V. Analytical model of hand phalanges desired trajectory for rehabilitation and design a sliding mode controller based on this model. Mech. Eng. 2020, 20, 129–137. [Google Scholar]
- Liu, S.; Huang, W.; Ji, H.; Wang, L. Robust model-free adaptive iterative learning control for an autonomous bus trajectory tracking system. Sci. Prog. 2024, 107, 00368504241249617. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Hou, Z.; Tian, T. A novel dual successive projection-based model-free adaptive control method and application to an autonomous car. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3444–3457. [Google Scholar] [CrossRef]
- Liu, S.; Hou, Z.; Tian, T. Path tracking control of a self-driving wheel excavator via an enhanced data-driven model-free adaptive control approach. IET Control Theory Appl. 2020, 14, 220–232. [Google Scholar] [CrossRef]
- Tian, T.; Hou, Z.; Liu, S. Model-free adaptive control based lateral control of self-driving car. Acta Autom. Sin. 2017, 43, 1931–1940. [Google Scholar]
- Ren, Y.; Hou, Z.; Nikolas, I. Data Driven Model Free Adaptive Iterative Learning Perimeter Control for Largescale Urban Road Networks. Transp. Res. Part C Emerg. Technol. 2020, 115, 102618. [Google Scholar] [CrossRef]
- Aghaei, H.; Pang, S.; Miliani, E. Data-driven model-free adaptive current control of a wound rotor synchronous machine drive system. IEEE Trans. Transp. Electrif. 2020, 6, 1146–1156. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Wang, J. Data-driven model-free adaptive sliding mode control for the multi degree-of-freedom robotic exoskeleton. Inf. Sci. 2016, 327, 246–257. [Google Scholar] [CrossRef]
- Ren, Y.; Hou, Z. Robust Model Free Adaptive Iterative Learning Formation for Unknown Heterogeneous Nonlinear Multi-agent Systems. IET Control Theory Appl. 2020, 14, 654–663. [Google Scholar] [CrossRef]
- Ren, Y.; Ji, H.; Li, D.; Xie, Y.; Xiong, X.; Wang, L. Data-Driven Containment Control for a Class of Nonlinear Multi-Agent Systems: A Model Free Adaptive Control Approach. Appl. Sci. 2024, 14, 5527. [Google Scholar] [CrossRef]
- Ren, Y.; Yin, H.; Wang, L.; Ji, H. Data-Driven RBFNN-Enhanced Model-Free Adaptive Traffic Symmetrical Signal Control for a Multi-Phase Intersection with Fast-Changing Traffic Flow. Symmetry 2023, 15, 1235. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, S.; Li, D.; Zhang, D.; Lei, T.; Wang, L. Model-free adaptive consensus design for a class of unknown heterogeneous nonlinear multi-agent systems with packet dropouts. Sci. Rep. 2024, 14, 23093. [Google Scholar] [CrossRef] [PubMed]
- Arimoto, S.; Kawamura, S.; Miyazaki, F. Bettering operation of robots by learning. J. Intell. Robot Syst. 1984, 1, 123–140. [Google Scholar] [CrossRef]
- Bu, X.; Hou, Z.; Chi, R. Model free adaptive iterative learning control for farm vehicle path tracking. IFAC Proc. Vol. 2013, 46, 153–158. [Google Scholar] [CrossRef]
- Yao, W.; Pang, Z.; Chi, R.; Shao, W. Track tracking control of sanitation vehicle based on model-free adaptive iterative learning control. IET Control Theory Appl. 2022, 39, 101–108. [Google Scholar]
- Liang, J.; Xie, X.; Yang, M.; Li, T.; Qin, Y. Model-free Adaptive Iterative Learning Control of CNC Machine Tool Position Servo System. Mach. Tool Hydraul. 2020, 48, 124–128. [Google Scholar]
- Zhao, Y.; Cao, R.; Zhou, H. Model-free Adaptive Iterative Learning Control for Noncircular Turning System. Control Eng. China 2018, 25, 1922–1926. [Google Scholar]
- Hou, Z.S.; Yan, J.W. Model Free Adaptive Control Based Freeway Ramp Metering with Feedforward Iterative Learning Controller. Acta Autom. Sin. 2009, 35, 588–595. [Google Scholar]
- Han, J. Active Disturbance Rejection Control Technique—The Technique for Estimating and Compensating the Uncertainties; National Defense Industry Press: Beijing, China, 2008; pp. 183–280. [Google Scholar]
- Jin, H.; Song, J.; Lan, W. On the characteristics of ADRC: A PID interpretation. Sci. China Inf. Sci. 2020, 63, 209201. [Google Scholar] [CrossRef]
- Zhong, S.; Huang, Y.; Guo, L. A parameter formula connecting PID and ADRC. Sci. China Inf. Sci. 2020, 63, 192203. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, J.; Zhang, X.; Li, X.; Wang, W.; Ding, S. A Virtual Synchronous Generator Secondary Frequency Modulation Control Method Based on Active Disturbance Rejection Controller. Electronics 2023, 12, 4587. [Google Scholar] [CrossRef]
- Li, J.; Ran, M.; Xie, L. Design and Experimental Evaluation of a Hierarchical Controller for an Autonomous Ground Vehicle With Large Uncertainties. IEEE Trans. Control. Syst. Technol. 2022, 30, 1215–1227. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Gu, S. Discrete Time Trajectory Tracking Control for Four-Mecanum-Wheeled Mobile Vehicle: An Variable Gain ADRC Method. IEEE Rob. Autom. 2024, 9, 7771–7778. [Google Scholar] [CrossRef]
- Xia, Y.; Pu, F.; Li, S.; Gao, Y. Lateral Path Tracking Control of Autonomous Land Vehicle Based on ADRC and Differential Flatness. IEEE Trans. Ind. Electron. 2016, 63, 3091–3099. [Google Scholar] [CrossRef]
- Jin, S.; Hou, Z.; Chi, R. Data-driven model-free adaptive iterative learning control for a class of discrete-time nonlinear systems. IET Control Theory Appl. 2012, 29, 1001–1009. [Google Scholar]
- He, H.; Han, M.; Liu, W.; Cao, J.; Shi, M.; Zhou, N. MPC-based longitudinal control strategy considering energy consumption for a dual-motor electric vehicle. Energy 2022, 253, 124004. [Google Scholar] [CrossRef]
- Shaju, A.; Southward, S.; Ahmadian, M. PID-Based Longitudinal Control of Platooning Trucks. Machines 2023, 11, 1069. [Google Scholar] [CrossRef]
- Qin, Z.; Jing, H.; Chen, L.; Hu, M.; Bian, Y.; Cui, Q. Longitudinal Vehicle Stability Control Based on Modified Sliding Mode Control. Automot. Innov. 2024, 7, 335–348. [Google Scholar] [CrossRef]
Time (s) | Distance from Initial Position (m) | Position | Weight (kg) | Road Slope |
---|---|---|---|---|
0 | 0 | Zhangyicun North Station | 10,000 | 2.3 |
6 | 0 | Zhangyicun North Station | 10,000 | 2.3 |
60 | 319 | Intersection 1 | 10,000 | 1.9 |
106 | 319 | Intersection 1 | 10,000 | 1.9 |
151 | 753 | Wuzhuang South Station | 9200 | 1.7 |
166 | 753 | Wuzhuang South Station | 9200 | 1.7 |
193 | 923 | Intersection 2 | 9200 | 1.1 |
281 | 923 | Intersection 2 | 9200 | 1.1 |
351 | 1577 | Lianfang Dongqiao South Station | 9700 | 1.4 |
360 | 1577 | Wuzhuang South Station | 9700 | 1.4 |
Weight Ratio | MTE |
---|---|
6.31 | |
6.62 | |
8.42 | |
12.61 | |
25.73 |
MTE | MSE | |
---|---|---|
FFDL-MFAFILC | 6.31 | 7.45 |
FFDL-MFAILC | 7.91 | 13.93 |
MPC | 16.83 | 31.15 |
PID | 34.51 | 146.19 |
SMC | 28.62 | 109.14 |
MTE | MSE | |
---|---|---|
FFDL-MFAFILC | 13.66 | 17.14 |
FFDL-MFAILC | 17.38 | 28.01 |
MPC | 19.40 | 47.55 |
PID | 36.29 | 148.78 |
SMC | 30.95 | 121.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiu, W.; Xie, Y.; Ren, Y.; Wang, L. Data-Driven Bus Trajectory Tracking Based on Feedforward–Feedback Model-Free Adaptive Iterative Learning Control. Electronics 2024, 13, 4673. https://doi.org/10.3390/electronics13234673
Xiu W, Xie Y, Ren Y, Wang L. Data-Driven Bus Trajectory Tracking Based on Feedforward–Feedback Model-Free Adaptive Iterative Learning Control. Electronics. 2024; 13(23):4673. https://doi.org/10.3390/electronics13234673
Chicago/Turabian StyleXiu, Weijie, Yongqiang Xie, Ye Ren, and Li Wang. 2024. "Data-Driven Bus Trajectory Tracking Based on Feedforward–Feedback Model-Free Adaptive Iterative Learning Control" Electronics 13, no. 23: 4673. https://doi.org/10.3390/electronics13234673
APA StyleXiu, W., Xie, Y., Ren, Y., & Wang, L. (2024). Data-Driven Bus Trajectory Tracking Based on Feedforward–Feedback Model-Free Adaptive Iterative Learning Control. Electronics, 13(23), 4673. https://doi.org/10.3390/electronics13234673