Carbon Quantum Dots as Phosphors in LEDs: Perspectives and Limitations—A Critical Review of the Literature
Abstract
1. Introduction
1.1. CQDs—A New Type of Phosphorescent Material
1.2. Synthesis of CQDs
2. Dependence of Light Emission—Factors
3. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shabbir, H.; Wojnicki, M. Recent Progress of Non-Cadmium and Organic Quantum Dots for Optoelectronic Applications with a Focus on Photodetector Devices. Electronics 2023, 12, 1327. [Google Scholar] [CrossRef]
- Pourret, O.; Hursthouse, A. It’s Time to Replace the Term “Heavy Metals” with “Potentially Toxic Elements” When Reporting Environmental Research. Int. J. Environ. Res. Public Health 2019, 16, 4446. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gong, X. The Emerging Development of Multicolor Carbon Dots. Small 2022, 18, 2205099. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef]
- Shabbir, H.; Csapó, E.; Wojnicki, M. Carbon Quantum Dots: The Role of Surface Functional Groups and Proposed Mechanisms for Metal Ion Sensing. Inorganics 2023, 11, 262. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, T.; Liang, R.; Wei, M. Application of Zero-Dimensional Nanomaterials in Biosensing. Front. Chem. 2020, 8, 320. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, B.; Li, Z.; Wang, Y.; Zhou, J.; Li, Y. Carbon Quantum Dots as Fluorescence Sensors for Label-Free Detection of Folic Acid in Biological Samples. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 229, 117931. [Google Scholar] [CrossRef]
- Chellasamy, G.; Arumugasamy, S.K.; Govindaraju, S.; Yun, K. Green Synthesized Carbon Quantum Dots from Maple Tree Leaves for Biosensing of Cesium and Electrocatalytic Oxidation of Glycerol. Chemosphere 2022, 287, 131915. [Google Scholar] [CrossRef]
- Yuan, T.; Yuan, F.; Sui, L.; Zhang, Y.; Li, Y.; Li, X.; Tan, Z.; Fan, L. Carbon Quantum Dots with Near-Unity Quantum Yield Bandgap Emission for Electroluminescent Light-Emitting Diodes. Angew. Chem. Int. Ed. 2023, 62, e202218568. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Z.; Meng, T.; Yuan, T.; Ni, R.; Li, Y.; Li, X.; Zhang, Y.; Tan, Z.; Lei, S.; et al. Red Phosphorescent Carbon Quantum Dot Organic Framework-Based Electroluminescent Light-Emitting Diodes Exceeding 5% External Quantum Efficiency. J. Am. Chem. Soc. 2021, 143, 18941–18951. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, C.; Song, W.; Wei, L.; Wu, P. Preparation of Ethanediamine-Doped Carbon Quantum Dots and Their Applications in White LEDs and Fluorescent TLC Plate. Carbon Lett. 2022, 32, 581–589. [Google Scholar] [CrossRef]
- Yuan, F.; Wang, Z.; Li, X.; Li, Y.; Tan, Z.; Fan, L.; Yang, S. Bright Multicolor Bandgap Fluorescent Carbon Quantum Dots for Electroluminescent Light-Emitting Diodes. Adv. Mater. 2017, 29, 1604436. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yuan, F.; Li, X.; Li, Y.; Zhong, H.; Fan, L.; Yang, S. 53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm White-Light-Emitting Diodes. Adv. Mater. 2017, 29, 1702910. [Google Scholar] [CrossRef] [PubMed]
- Alhalaby, H.; Zaraket, H.; Principe, M. Enhanced Photoluminescence with Dielectric Nanostructures: A Review. Results Opt. 2021, 3, 100073. [Google Scholar] [CrossRef]
- Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H. Red, Green, and Blue Luminescence by Carbon Dots: Full-Color Emission Tuning and Multicolor Cellular Imaging. Angew. Chem. Int. Ed. 2015, 54, 5360–5363. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Yin, L.; Liu, Y.; Guo, H.; Lai, J.; Han, Y.; Li, G.; Li, M.; Zhang, J.; et al. Full-Color Fluorescent Carbon Quantum Dots. Sci. Adv. 2020, 6, eabb6772. [Google Scholar] [CrossRef]
- Da, X.; Han, Z.; Yang, Z.; Zhang, D.; Hong, R.; Tao, C.; Lin, H.; Huang, Y. Preparation of Multicolor Carbon Dots with High Fluorescence Quantum Yield and Application in White LED. Chem. Phys. Lett. 2022, 794, 139497. [Google Scholar] [CrossRef]
- Kumar, A.; Chowdhuri, A.R.; Laha, D.; Mahto, T.K.; Karmakar, P.; Sahu, S.K. Green Synthesis of Carbon Dots from Ocimum Sanctum for Effective Fluorescent Sensing of Pb2+ Ions and Live Cell Imaging. Sens. Actuators B Chem. 2017, 242, 679–686. [Google Scholar] [CrossRef]
- Qi, H.; Teng, M.; Liu, M.; Liu, S.; Li, J.; Yu, H.; Teng, C.; Huang, Z.; Liu, H.; Shao, Q.; et al. Biomass-Derived Nitrogen-Doped Carbon Quantum Dots: Highly Selective Fluorescent Probe for Detecting Fe 3+ Ions and Tetracyclines. J. Colloid Interface Sci. 2019, 539, 332–341. [Google Scholar] [CrossRef]
- Jorns, M.; Pappas, D. A Review of Fluorescent Carbon Dots, Their Synthesis, Physical and Chemical Characteristics, and Applications. Nanomaterials 2021, 11, 1448. [Google Scholar] [CrossRef]
- Shabbir, H.; Tokarski, T.; Ungor, D.; Wojnicki, M. Eco Friendly Synthesis of Carbon Dot by Hydrothermal Method for Metal Ions Salt Identification. Materials 2021, 14, 7604. [Google Scholar] [CrossRef] [PubMed]
- Wojnicki, M.; Hessel, V. Quantum Materials Made in Microfluidics—Critical Review and Perspective. Chem. Eng. J. 2022, 438, 135616. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Liu, G.; Zhang, Y.; Han, G.; Vomiero, A.; Zhao, H. Colloidal Carbon Quantum Dots as Light Absorber for Efficient and Stable Ecofriendly Photoelectrochemical Hydrogen Generation. Nano Energy 2021, 86, 106122. [Google Scholar] [CrossRef]
- Ding, H.; Wei, J.-S.; Zhang, P.; Zhou, Z.-Y.; Gao, Q.-Y.; Xiong, H.-M. Solvent-Controlled Synthesis of Highly Luminescent Carbon Dots with a Wide Color Gamut and Narrowed Emission Peak Widths. Small 2018, 14, 1800612. [Google Scholar] [CrossRef] [PubMed]
- Dua, S.; Kumar, P.; Pani, B.; Kaur, A.; Khanna, M.; Bhatt, G. Stability of Carbon Quantum Dots: A Critical Review. RSC Adv. 2023, 13, 13845–13861. [Google Scholar] [CrossRef]
- Hofmann, M.S.; Glückert, J.T.; Noé, J.; Bourjau, C.; Dehmel, R.; Högele, A. Bright, Long-Lived and Coherent Excitons in Carbon Nanotube Quantum Dots. Nat. Nanotechnol. 2013, 8, 502–505. [Google Scholar] [CrossRef]
- Ding, H.; Wei, J.-S.; Zhong, N.; Gao, Q.-Y.; Xiong, H.-M. Highly Efficient Red-Emitting Carbon Dots with Gram-Scale Yield for Bioimaging. Langmuir 2017, 33, 12635–12642. [Google Scholar] [CrossRef]
- Miao, X.; Qu, D.; Yang, D.; Nie, B.; Zhao, Y.; Fan, H.; Sun, Z. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization. Adv. Mater. 2018, 30, 1704740. [Google Scholar] [CrossRef]
- McEnroe, A.; Brunt, E.; Mosleh, N.; Yu, J.; Hailstone, R.; Sun, X. Bright, Green Fluorescent Carbon Dots for Sensitive and Selective Detection of Ferrous Ions. Talanta Open 2023, 7, 100236. [Google Scholar] [CrossRef]
- Liu, J.; Li, D.; Zhang, K.; Yang, M.; Sun, H.; Yang, B. One-Step Hydrothermal Synthesis of Nitrogen-Doped Conjugated Carbonized Polymer Dots with 31% Efficient Red Emission for In Vivo Imaging. Small 2018, 14, 1703919. [Google Scholar] [CrossRef]
- Zhao, S.; Lan, M.; Zhu, X.; Xue, H.; Ng, T.-W.; Meng, X.; Lee, C.-S.; Wang, P.; Zhang, W. Green Synthesis of Bifunctional Fluorescent Carbon Dots from Garlic for Cellular Imaging and Free Radical Scavenging. ACS Appl. Mater. Interfaces 2015, 7, 17054–17060. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, G.; Izwan Misnon, I.; Jose, R. Solvothermal Synthesis of Green Fluorescent Carbon Dots from Palm Kernel Shells. Mater. Today Proc. 2023, In Press. [Google Scholar] [CrossRef]
- Ozyurt, D.; Al Kobaisi, M.; Hocking, R.K.; Fox, B. Properties, Synthesis, and Applications of Carbon Dots: A Review. Carbon Trends 2023, 12, 100276. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Basics of Green Chemistry. United States Environmental. Available online: https://www.epa.gov/greenchemistry/basics-green-chemistry (accessed on 31 October 2024).
- Xu, K.-F.; Jia, H.-R.; Wang, Z.; Feng, H.-H.; Li, L.-Y.; Zhang, R.; Durrani, S.; Lin, F.; Wu, F.-G. See the Unseen: Red-Emissive Carbon Dots for Visualizing the Nucleolar Structures in Two Model Animals and In Vivo Drug Toxicity. Small 2023, 19, 2205890. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Liu, Y.; Li, H.; Qi, W.; Sun, K. Luminescence of Carbon Quantum Dots and Their Application in Biochemistry. Heliyon 2023, 9, e20317. [Google Scholar] [CrossRef] [PubMed]
- Prado, M.B.; Truong, N.T.; Wanekaya, A.K. Improving the Quantum Yield of Nitrogen-Doped Carbon Dots by Varying Dopant Ratios and PH. Sens. Actuators Rep. 2023, 6, 100165. [Google Scholar] [CrossRef]
- Yang, H.L.; Bai, L.F.; Geng, Z.R.; Chen, H.; Xu, L.T.; Xie, Y.C.; Wang, D.J.; Gu, H.W.; Wang, X.M. Carbon Quantum Dots: Preparation, Optical Properties, and Biomedical Applications. Mater. Today Adv. 2023, 18, 100376. [Google Scholar] [CrossRef]
- Khoshnood, A.; Farhadian, N.; Abnous, K.; Matin, M.M.; Ziaee, N.; Yaghoobi, E. N Doped-Carbon Quantum Dots with Ultra-High Quantum Yield Photoluminescent Property Conjugated with Folic Acid for Targeted Drug Delivery and Bioimaging Applications. J. Photochem. Photobiol. A Chem. 2023, 444, 114972. [Google Scholar] [CrossRef]
- Pan, L.; Sun, S.; Zhang, A.; Jiang, K.; Zhang, L.; Dong, C.; Huang, Q.; Wu, A.; Lin, H. Truly Fluorescent Excitation-Dependent Carbon Dots and Their Applications in Multicolor Cellular Imaging and Multidimensional Sensing. Adv. Mater. 2015, 27, 7782–7787. [Google Scholar] [CrossRef]
- Lai, Z.; Yang, X.; Li, A.; Qiu, Y.; Cai, J.; Yang, P. Facile Preparation of Full-Color Emissive Carbon Dots and Their Applications in Imaging of the Adhesion of Erythrocytes to Endothelial Cells. J. Mater. Chem. B 2017, 5, 5259–5264. [Google Scholar] [CrossRef]
- Yao, Z.; Lai, Z.; Chen, C.; Xiao, S.; Yang, P. Full-Color Emissive Carbon-Dots Targeting Cell Walls of Onion for in Situ Imaging of Heavy Metal Pollution. Analyst 2019, 144, 3685–3690. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, M.; Wu, Y.; Zhang, R.; Cao, Y.; Xu, X.; Chen, X.; Cai, L.; Xu, Q. Multicolor Tunable Highly Luminescent Carbon Dots for Remote Force Measurement and White Light Emitting Diodes. Chem. Commun. 2019, 55, 12164–12167. [Google Scholar] [CrossRef]
- Shen, C.; Lou, Q.; Lv, C.; Zang, J.; Qu, S.; Dong, L.; Shan, C. Bright and Multicolor Chemiluminescent Carbon Nanodots for Advanced Information Encryption. Adv. Sci. 2019, 6, 1802331. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Zheng, X.; Zhang, H.; Xu, M.; Wang, S.; Yang, Q.; Xiong, C. Multi-Color Fluorescent Carbon Dots with Single Wavelength Excitation for White Light-Emitting Diodes. J. Alloys Compd. 2019, 793, 613–619. [Google Scholar] [CrossRef]
- Kotańska, M.; Wojtaszek, K.; Kubacka, M.; Bednarski, M.; Nicosia, N.; Wojnicki, M. The Influence of Caramel Carbon Quantum Dots and Caramel on Platelet Aggregation, Protein Glycation and Lipid Peroxidation. Antioxidants 2024, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, H.; Wojtaszek, K.; Rutkowski, B.; Csapó, E.; Bednarski, M.; Adamiec, A.; Głuch-Lutwin, M.; Mordyl, B.; Druciarek, J.; Kotańska, M.; et al. Milk-Derived Carbon Quantum Dots: Study of Biological and Chemical Properties Provides Evidence of Toxicity. Molecules 2022, 27, 8728. [Google Scholar] [CrossRef] [PubMed]
- Sawalha, S.; Silvestri, A.; Criado, A.; Bettini, S.; Prato, M.; Valli, L. Tailoring the Sensing Abilities of Carbon Nanodots Obtained from Olive Solid Wastes. Carbon 2020, 167, 696–708. [Google Scholar] [CrossRef]
- Tyagi, A.; Tripathi, K.M.; Singh, N.; Choudhary, S.; Gupta, R.K. Green Synthesis of Carbon Quantum Dots from Lemon Peel Waste: Applications in Sensing and Photocatalysis. RSC Adv. 2016, 6, 72423–72432. [Google Scholar] [CrossRef]
- Nguyen, K.G.; Baragau, I.-A.; Gromicova, R.; Nicolaev, A.; Thomson, S.A.J.; Rennie, A.; Power, N.P.; Sajjad, M.T.; Kellici, S. Investigating the Effect of N-Doping on Carbon Quantum Dots Structure, Optical Properties and Metal Ion Screening. Sci. Rep. 2022, 12, 13806. [Google Scholar] [CrossRef]
- Liu, H.; He, Z.; Jiang, L.-P.; Zhu, J.-J. Microwave-Assisted Synthesis of Wavelength-Tunable Photoluminescent Carbon Nanodots and Their Potential Applications. ACS Appl. Mater. Interfaces 2015, 7, 4913–4920. [Google Scholar] [CrossRef]
- Prathumsuwan, T.; Jamnongsong, S.; Sampattavanich, S.; Paoprasert, P. Preparation of Carbon Dots from Succinic Acid and Glycerol as Ferrous Ion and Hydrogen Peroxide Dual-Mode Sensors and for Cell Imaging. Opt. Mater. 2018, 86, 517–529. [Google Scholar] [CrossRef]
- Atchudan, R.; Edison, T.N.J.I.; Aseer, K.R.; Perumal, S.; Karthik, N.; Lee, Y.R. Highly Fluorescent Nitrogen-Doped Carbon Dots Derived from Phyllanthus Acidus Utilized as a Fluorescent Probe for Label-Free Selective Detection of Fe3+ Ions, Live Cell Imaging and Fluorescent Ink. Biosens. Bioelectron. 2018, 99, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhu, C.; Song, J.; Li, H.; Du, D.; Lin, Y. Drug-Derived Bright and Color-Tunable N-Doped Carbon Dots for Cell Imaging and Sensitive Detection of Fe3+ in Living Cells. ACS Appl. Mater. Interfaces 2017, 9, 7399–7405. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Hu, S.; Wang, Y.; Li, Z.; Lin, H. Photo-Stimulated Polychromatic Room Temperature Phosphorescence of Carbon Dots. Small 2020, 16, 2001909. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Lu, C.; Yang, X. Efficient Room Temperature Phosphorescence Carbon Dots: Information Encryption and Dual-Channel PH Sensing. Carbon 2019, 152, 609–615. [Google Scholar] [CrossRef]
- Jiao, T.; Wen, H.; Dong, W.; Wen, W.; Li, Z. Metal Ion (Fe3+ and Cu2+) Catalyzed Synthesis of High Quantum Yield Carbon Dots. Mater. Lett. 2022, 324, 132575. [Google Scholar] [CrossRef]
- Niu, F.; Xu, Y.; Liu, J.; Song, Z.; Liu, M.; Liu, J. Controllable Electrochemical/Electroanalytical Approach to Generate Nitrogen-Doped Carbon Quantum Dots from Varied Amino Acids: Pinpointing the Utmost Quantum Yield and the Versatile Photoluminescent and Electrochemiluminescent Applications. Electrochim. Acta 2017, 236, 239–251. [Google Scholar] [CrossRef]
- Wang, F.; Xie, Z.; Zhang, H.; Liu, C.; Zhang, Y. Highly Luminescent Organosilane-Functionalized Carbon Dots. Adv. Funct. Mater. 2011, 21, 1027–1031. [Google Scholar] [CrossRef]
- Saikia, M.; Hazarika, A.; Roy, K.; Khare, P.; Dihingia, A.; Konwar, R.; Saikia, B.K. Waste-Derived High-Yield Biocompatible Fluorescent Carbon Quantum Dots for Biological and Nanofertiliser Applications. J. Environ. Chem. Eng. 2023, 11, 111344. [Google Scholar] [CrossRef]
- Gupta, A.; Nandi, C.K. PC12 Live Cell Ultrasensitive Neurotransmitter Signaling Using High Quantum Yield Sulphur Doped Carbon Dots and Its Extracellular Ca2+ Ion Dependence. Sens. Actuators B Chem. 2017, 245, 137–145. [Google Scholar] [CrossRef]
- Sun, Z.; Yan, F.; Xu, J.; Zhang, H.; Chen, L. Solvent-Controlled Synthesis Strategy of Multicolor Emission Carbon Dots and Its Applications in Sensing and Light-Emitting Devices. Nano Res. 2022, 15, 414–422. [Google Scholar] [CrossRef]
- Yuan, F.; Yuan, T.; Sui, L.; Wang, Z.; Xi, Z.; Li, Y.; Li, X.; Fan, L.; Tan, Z.; Chen, A.; et al. Engineering Triangular Carbon Quantum Dots with Unprecedented Narrow Bandwidth Emission for Multicolored LEDs. Nat. Commun. 2018, 9, 2249. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Huang, J.; Ding, L. Preparation of Carbon Dots with High-Fluorescence Quantum Yield and Their Application in Dopamine Fluorescence Probe and Cellular Imaging. J. Nanomater. 2019, 2019, 5037243. [Google Scholar] [CrossRef]
- Liu, J.; Kong, T.; Xiong, H.-M. Mulberry-Leaves-Derived Red-Emissive Carbon Dots for Feeding Silkworms to Produce Brightly Fluorescent Silk. Adv. Mater. 2022, 34, 2200152. [Google Scholar] [CrossRef]
- Emami, E.; Mousazadeh, M.H. Green Synthesis of Carbon Dots for Ultrasensitive Detection of Cu2+ and Oxalate with Turn On-off-on Pattern in Aqueous Medium and Its Application in Cellular Imaging. J. Photochem. Photobiol. A Chem. 2021, 418, 113443. [Google Scholar] [CrossRef]
- Chen, H.; Li, D.; Zheng, Y.; Wang, K.; Zhang, H.; Feng, Z.; Huang, B.; Wen, H.; Wu, J.; Xue, W.; et al. Construction of Optical Dual-Mode Sensing Platform Based on Green Emissive Carbon Quantum Dots for Effective Detection of ClO- and Cellular Imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 309, 123733. [Google Scholar] [CrossRef]
- Du, Q.; Zheng, J.; Wang, J.; Yang, Y.; Liu, X. The Synthesis of Green Fluorescent Carbon Dots for Warm White LEDs. RSC Adv. 2018, 8, 19585–19595. [Google Scholar] [CrossRef]
- Xu, J.; Qi, Q.; Sun, L.; Guo, X.; Zhang, H.; Zhao, X. Green Fluorescent Carbon Dots from Chitosan as Selective and Sensitive “off-on” Probes for Nitrite and “on-off-on” Probes for Enrofloxacin Detection. J. Alloys Compd. 2022, 908, 164519. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, R.; Zhang, Y.; Cheng, S.; Zhang, Y. High Quantum Yield Nitrogen Doped Carbon Dots for Ag+ Sensing and Bioimaging. J. Mol. Struct. 2023, 1283, 135212. [Google Scholar] [CrossRef]
- Khan, W.U.; Wang, D.; Zhang, W.; Tang, Z.; Ma, X.; Ding, X.; Du, S.; Wang, Y. High Quantum Yield Green-Emitting Carbon Dots for Fe(III) Detection, Biocompatible Fluorescent Ink and Cellular Imaging. Sci. Rep. 2017, 7, 14866. [Google Scholar] [CrossRef]
- Yoshinaga, T.; Shinoda, M.; Iso, Y.; Isobe, T.; Ogura, A.; Takao, K. Glycothermally Synthesized Carbon Dots with Narrow-Bandwidth and Color-Tunable Solvatochromic Fluorescence for Wide-Color-Gamut Displays. ACS Omega 2021, 6, 1741–1750. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, W.R.; Li, Y.; Zou, X.; Li, W.; Liang, J.; Zhang, H.; Liu, Y.; Zhang, X.; Hu, C.; et al. Architecting Ultra-Bright Silanized Carbon Dots by Alleviating the Spin-Orbit Coupling Effect: A Specific Fluorescent Nanoprobe to Label Dead Cells. Chem. Eng. J. 2022, 428, 131168. [Google Scholar] [CrossRef]
- Mai, X.D.; Nguyen, S.H.; Tran, D.L.; Nguyen, V.Q.; Nguyen, V.H. Single-Chip Horticultural LEDs Enabled by Greenly Synthesized Red-Emitting Carbon Quantum Dots. Mater. Lett. 2023, 341, 134195. [Google Scholar] [CrossRef]
- Dai, Y.; Xu, W.; Hong, J.; Zheng, Y.; Fan, H.; Zhang, J.; Fei, J.; Zhu, W.; Hong, J. A Molecularly Imprinted Ratiometric Fluorescence Sensor Based on Blue/Red Carbon Quantum Dots for the Visual Determination of Thiamethoxam. Biosens. Bioelectron. 2023, 238, 115559. [Google Scholar] [CrossRef]
- Shi, P.; Song, Y.; Tang, J.; Nie, Z.; Chang, J.; Chen, Q.; He, Y.; Guo, T.; Zhang, J.; Wang, H. Ultra-Narrow Bandwidth Red-Emission Carbon Quantum Dots and Their Bio-Imaging. Phys. E Low-Dimens. Syst. Nanostructures 2022, 142, 115197. [Google Scholar] [CrossRef]
- Sun, Y.; Qin, H.; Geng, X.; Yang, R.; Qu, L.; Kani, A.N.; Li, Z. Rational Design of Far-Red to Near-Infrared Emitting Carbon Dots for Ultrafast Lysosomal Polarity Imaging. ACS Appl. Mater. Interfaces 2020, 12, 31738–31744. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wei, J.-S.; Zhang, P.; Niu, X.-Q.; Zhao, W.; Zhu, Z.-Y.; Ding, H.; Xiong, H.-M. Red-Emissive Carbon Dots for Fingerprints Detection by Spray Method: Coffee Ring Effect and Unquenched Fluorescence in Drying Process. ACS Appl. Mater. Interfaces 2017, 9, 18429–18433. [Google Scholar] [CrossRef]
- Gao, W.; Song, H.; Wang, X.; Liu, X.; Pang, X.; Zhou, Y.; Gao, B.; Peng, X. Carbon Dots with Red Emission for Sensing of Pt2+, Au3+, and Pd2+ and Their Bioapplications in Vitro and in Vivo. ACS Appl. Mater. Interfaces 2018, 10, 1147–1154. [Google Scholar] [CrossRef]
- Liu, C.; Fan, W.; Cheng, W.-X.; Gu, Y.; Chen, Y.; Zhou, W.; Yu, X.-F.; Chen, M.; Zhu, M.; Fan, K.; et al. Red Emissive Carbon Dot Superoxide Dismutase Nanozyme for Bioimaging and Ameliorating Acute Lung Injury. Adv. Funct. Mater. 2023, 33, 2213856. [Google Scholar] [CrossRef]
- Kim, B.S.; Oh, G.H.; Song, Y.; Lee, Y.S.; Kim, S. Acid Catalyzed Microwave-Assisted Production of Full-Color Light Emissive Carbon Quantum Dots for CCT-Tunable WLEDs. Appl. Surf. Sci. 2023, 640, 158301. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, L.; Jiang, K.; Wu, A.; Lin, H. Toward High-Efficient Red Emissive Carbon Dots: Facile Preparation, Unique Properties, and Applications as Multifunctional Theranostic Agents. Chem. Mater. 2016, 28, 8659–8668. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, G.; Li, W.; Luo, X.; Hu, Z.; Wu, F. Facile Synthesis of Efficient Red-Emissive Carbon Quantum Dots as a Multifunctional Platform for Biosensing and Bioimaging. Dye. Pigment. 2023, 215, 111303. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, G.; Zhang, Z.; Lei, J.H.; Liu, T.M.; Xing, G.; Deng, C.X.; Tang, Z.; Qu, S. One Step Synthesis of Efficient Red Emissive Carbon Dots and Their Bovine Serum Albumin Composites with Enhanced Multi-Photon Fluorescence for in Vivo Bioimaging. Light Sci. Appl. 2022, 11, 113. [Google Scholar] [CrossRef] [PubMed]
- He, J.; He, Y.; Chen, Y.; Lei, B.; Zhuang, J.; Xiao, Y.; Liang, Y.; Zheng, M.; Zhang, H.; Liu, Y. Solid-State Carbon Dots with Red Fluorescence and Efficient Construction of Dual-Fluorescence Morphologies. Small 2017, 13, 1700075. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Gu, C.; Jiao, Y.; Gao, Y.; Liu, X.; Guo, J.; Qian, T. Novel Preparation of Red Fluorescent Carbon Dots for Tetracycline Sensing and Its Application in Trace Determination. Talanta 2023, 253, 123975. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; He, P.; Xi, Z.; Li, X.; Li, Y.; Zhong, H.; Fan, L.; Yang, S. Highly Efficient and Stable White LEDs Based on Pure Red Narrow Bandwidth Emission Triangular Carbon Quantum Dots for Wide-Color Gamut Backlight Displays. Nano Res. 2019, 12, 1669–1674. [Google Scholar] [CrossRef]
- Jia, H.; Wang, Z.; Yuan, T.; Yuan, F.; Li, X.; Li, Y.; Tan, Z.; Fan, L.; Yang, S. Electroluminescent Warm White Light-Emitting Diodes Based on Passivation Enabled Bright Red Bandgap Emission Carbon Quantum Dots. Adv. Sci. 2019, 6, 1900397. [Google Scholar] [CrossRef]
- Yuan, B.; Guan, S.; Sun, X.; Li, X.; Zeng, H.; Xie, Z.; Chen, P.; Zhou, S. Highly Efficient Carbon Dots with Reversibly Switchable Green–Red Emissions for Trichromatic White Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2018, 10, 16005–16014. [Google Scholar] [CrossRef]
- Liu, Y.; Gou, H.; Huang, X.; Zhang, G.; Xi, K.; Jia, X. Rational Synthesis of Highly Efficient Ultra-Narrow Red-Emitting Carbon Quantum Dots for NIR-II Two-Photon Bioimaging. Nanoscale 2020, 12, 1589–1601. [Google Scholar] [CrossRef]
- Zhan, J.; Geng, B.; Wu, K.; Xu, G.; Wang, L.; Guo, R.; Lei, B.; Zheng, F.; Pan, D.; Wu, M. A Solvent-Engineered Molecule Fusion Strategy for Rational Synthesis of Carbon Quantum Dots with Multicolor Bandgap Fluorescence. Carbon 2018, 130, 153–163. [Google Scholar] [CrossRef]
- Su, R.; Guan, Q.; Cai, W.; Yang, W.; Xu, Q.; Guo, Y.; Zhang, L.; Fei, L.; Xu, M. Multi-Color Carbon Dots for White Light-Emitting Diodes. RSC Adv. 2019, 9, 9700–9708. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, G.; You, S.; Camargo, F.V.A.; Zavelani-Rossi, M.; Wang, X.; Sun, C.; Liu, B.; Zhang, Y.; Han, G.; et al. Gram-Scale Synthesis of Carbon Quantum Dots with a Large Stokes Shift for the Fabrication of Eco-Friendly and High-Efficiency Luminescent Solar Concentrators. Energy Environ. Sci. 2021, 14, 396–406. [Google Scholar] [CrossRef]
- Wei, X.; Yang, D.; Wang, L.; Wen, Z.; Cui, Z.; Wang, L.; He, H.; Zhang, W.; Han, Z.; Mei, S.; et al. Facile Synthesis of Red-Emissive Carbon Dots with Theoretical Understanding for Cellular Imaging. Colloids Surf. B Biointerfaces 2022, 220, 112869. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, J.; Wang, S.; Dai, Z.; Qin, S.; Mei, S.; Zhang, W.; Guo, R. Carbon Quantum Dots for Long-Term Protection against UV Degradation and Acidification in Paper-Based Relics. ACS Appl. Mater. Interfaces 2024, 16, 5009–5018. [Google Scholar] [CrossRef]
Dopant | Precursor | Solvent | Method | λex [nm] | λem [nm] | QY [%] | Reference |
---|---|---|---|---|---|---|---|
Green synthesis | |||||||
- | Sucrose | Deionized water | Hydrothermal (160 °C; 2 h 15 min) | 340 | 440 | - | [46] |
N | Fat-free UHT cow milk | - | Hydrothermal (200 °C, 3 h) | 300 | 420 | - | [47] |
N | Olive solid wastes | Hydrogen peroxide | Pyrolysis (600 °C; 1 h) | 360 | 460 | 3.0 | [48] |
- | Lemon peel waste | Water | Hydrothermal (200 °C; 12 h) | 360 | 441 | 14 | [49] |
N, S | Garlic | Water | Hydrothermal (200 °C; 3 h) | 360 | 442 | 17.5 | [31] |
N | Rice residue, glycine | Deionized water | Hydrothermal (200 °C; 12 h) | 360 | 440 | 23.48 | [19] |
Gray synthesis | |||||||
N | M-phenylenediamine | Ethanol | Solvothermal (180°C; 12 h) | 365 | 435 | 4.8 | [15] |
- | Ascorbic acid | Deionized water | Hydrothermal (190°C; 6 h) | 350 | 430 | 6.3 | [21] |
N | Glucose, ammonia | Deionized water | Continuous hydrothermal fow synthesis (450 °C; 24.8 MPa) | 320 | 410 | 9.6 | [50] |
N | Poly(ethylenimine) | Water | Microwave assisted (180 °C; 200 W; 15 min) | 347 | 464 | 10 | [51] |
N | Succinic acid | Deionized water, glycerol | Hydrothermal (250 °C; 6 h) | 320–360 | 410 | 11.0 | [52] |
N | P. acidus fruits, aqueous ammonia | Double-distilled water | Hydrothermal (180 °C; 8 h) | 350 | 420 | 14 | [53] |
N | Aminosalicylic acid | Ethanol | Solvothermal (200 °C; 18 h) | 365 | 480 | 16.4 | [54] |
N | Succinic acid, diethylenetriamine | Deionized water | Hydrothermal (270 °C; 15 h) | 345 | 422 | 18.2 | [55] |
N | Citric acid, urea | Distilled deionized water | Microwave assisted (200 °C; 10 min) | 340 | 430 | 19.18 (pH = 11) | [37] |
N | O-phenylenediamine, 4-aminobenzenesulfonic acid | Ethanol | Solvothermal (180 °C; 12 h) | 355 | 450 | 25.0 | [16] |
N | Triethanolamine | Distilled water, phosphoric acid | Heating (3 min, 650 W) | 380 | 445 | 26.69 | [56] |
N | 3,5-diaminobenzoic acid | Ethanol | Solvothermal (200 °C; 8 h) | 380 | 450 | 29.2 | [45] |
N | Tartaric acid, triammonium citrate | water | Solvothermal (180 °C; 8 h) | 395 | 440 | 43.6 | [17] |
- | Polyvinyl pyrrolidone, ascorbic acid (in presence of Fe3+ or Cu2+) | Distilled water | Hydrothermal (80 °C; 12 h) | 350 | 440 | 44.42 (for Cu-CDs) | [57] |
N | Amino acids a.o. L-aspartic acid | Distilled water, ammonia | Electrochemical | 365 | 435 | 46.2 | [58] |
Si | Citric acid anhydrous | N-(β-aminoethyl)-γ-aminopropyl methyldimethoxy silane | Pyrolysis (240 °C; 1 min) | 360 | 450 | 47 | [59] |
N | Citric acid, urea | Deionized water | Solvothermal (160 °C; 8 h) | 365 | 476 | 48 | [44] |
N | L-glutamic acid, o-phenylenediamine | Formamide | Solvothermal (210 °C; 10 h) | 389 | 443 | 54.2 | [24] |
N | Petroleum coke | Hydrogen peroxide | Ultrasonic-induced chemical oxidation | 320 | 445 | 55.14 | [60] |
S | Trisodium citrate solution, sodium thiosulfate | Distilled water | Microwave assisted pyrolysis method | 380 | 425 | 58.0 | [61] |
N | Citric acid (CA), Nile Blue A (NBA) | Deionized water | Solvothermal (200 °C; 5 h) | 340 | 440 | 64 | [62] |
N, S | Tobias acid, o-phenylenediamine | Formamide | Solvothermal (210 °C; 10 h) | 420 | 495 | 65.1 | [43] |
- | Phloroglucinol | Ethanol | Solvothermal (200 °C; 9 h) | 460 | 472 | 66 | [63] |
N | Citric acid, 2,3-diaminonaphthalene | Ethanol | Solvothermal (200 °C; 4 h) | 365 | 430 | 75 | [12] |
N, S | L-cysteine, citric acid | Deionized water | Microwave-assisted rapid synthesis | 355 | 439 | 85.0 | [64] |
N | Citric acid, polyethylene glycol (PEG-2000) | Deionized water, ethylenediamine | Hydrothermal (160 °C; 8 h) | 360 | ~445 | 88.32 (pH = 11) | [39] |
Dopant | Precursor | Solvent | Method | λex [nm] | λem [nm] | QY [%] | Reference |
---|---|---|---|---|---|---|---|
Green synthesis | |||||||
N | Mulberry leaves | Ethanol, water | Solvothermal (150 °C; 4 h) | - | 500 | - | [65] |
N, Al, Ag | Tulsi leaves (Ocimum sanctum) | Distilled water | Hydrothermal (180 °C; 4 h) | 450 | 500 | 9.3 | [18] |
N | Algae powder | Deionized water | Hydrothermal (180 °C; 1 h) | 450 | 520 | 32 | [66] |
Gray synthesis | |||||||
- | Succinic acid | Deionized water | Hydrothermal (250 °C; 6 h) | 420–460 | 525 | 7.0 | [52] |
N | Citric acid, acriflavine | Distilled water | Hydrothermal (180 °C; 6 h) | 460 | 515 | 10.86 | [67] |
N | Triethanolamine | Distilled water, phosphoric acid | Microwave heating (3 min; 650 W) | 356 | 518 | 15.85 (only coated on paper) | [56] |
N | Pyrogallic acid | DMF | Solvothermal (180 °C; 14 h) | 420 | 520 | 16.8 | [68] |
N | O-phenylenediamine | Ethanol | Solvothermal (180 °C; 12 h) | 420 | 535 | 17.6 | [15] |
N | Chitosan, p-phenylenediamine | Acetic acid | Hydrothermal (220 °C; 18 h) | 390 | 520 | 19 | [69] |
N | M-phenylenediamine, ethylenediamine | Water | Hydrothermal (150 °C; 3 h) | 415 | 510 | 25.5 | [29] |
N, S | O-phenylenediamine, 4-aminobenzenesulfonic acid | Ethanol | Solvothermal (180 °C; 12 h) | 420 | 500 | 28.0 | [16] |
N | Citric acid, urea | Dimethylacetamide | Solvothermal (160 °C; 8 h) | 365 | 543 | 33 | [44] |
N | O-aminophenol, ethylenediamine | Distilled water | Hydrothermal (200 °C; 10 h) | 430 | 510 | 38.4 | [70] |
N | Palm kernel shells | DMF | Solvothermal (180 °C; 12 h) | 440 | 520 | 39.3 | [32] |
N | L-glutamic acid, o-phenylenediamine | Formamide, DMF | Solvothermal (210 °C; 10 h) | 458 | 515 | 40.9 | [24] |
N | Tartaric acid, triammonium citrate | Ethanol | Solvothermal (180 °C; 8 h) | 415 | 521 | 41.2 | [17] |
N | Diammonium hydrogen citrate, urea | - | Heating in an open system (180 °C; 1 h) | 420 | 537 | 46.4 | [71] |
N | Phloroglucinol | 1,2- pentanediol | Ultrasonication/ Heating in an open system (180 °C; 6 h) | independent | 511 | 48 | [72] |
N | 3,5-diaminobenzoic acid, phosphoric acid | Ethanol | Solvothermal (200 °C; 8 h) | 460 | 500 | 69.2 | [45] |
- | Phloroglucinol | Ethanol | Solvothermal (200 °C; 24 h) | 500 | 507 | 72 | [63] |
N | Citric acid, 2,3-diaminonaphthalene | Ethanol | Solvothermal (200 °C; 9 h) | 365 | 513 | 73 | [12] |
Si, N | Erythrosin B, nitrogen, (3-Aminopropyl) trimethoxysilane | Water | Hydrothermal (180 °C; 6 h) | 490 | 516 | 93.8 | [73] |
Dopant | Precursor | Solvent | Method | λex [nm] | λem [nm] | QY [%] | Reference |
---|---|---|---|---|---|---|---|
Green synthesis | |||||||
- | Bougainvillea leaves | Ethanol | Hydrothermal (180 °C; 4 h) | 430–490 | 670 | - | [74] |
N, Si, P | Green tea powder | Ethanol | Ultrasonication (25 °C; 1 h) | 380 | 684 | 7.58 | [75] |
Gray synthesis | |||||||
N | Aminosalicylic acid | Ethanol | Solvothermal (200 °C; 18 h) | 510 | 610 | 5.8 | [54] |
N | Titanyl-phthalocyanine | Ethanol | Ultrasonication/ Solvothermal (180 °C; 6 h) | 340 | 674 | 7.54 | [76] |
N | N-Phenyl- o-phenylenediamine | Ethanol | Solvothermal (180 °C; 12 h) | 530 | 595 | 10.5 | [77] |
N, Cl | P-phenylenediamine, phosphorus acid | Water | Hydrothermal (180 °C; 24 h) | 530 | 620 | 11.2 | [78] |
N | Citric acid, 1,5-diaminonaphthalene | Concentrated sulfuric acid | Solvothermal (200 °C; 1 h) | independent | 604 | 12 | [12] |
- | Citric acid, neutral red | Deionized water | Hydrothermal (180 °C; 4 h) | 530 | 632 | 12.1 | [79] |
N | Citric acid, urea | DMF | Solvothermal (160–200 °C; 12 h) | 550 | 600–630 | 12.9 | [28] |
N, S | Glutathione, folic acid | Formamide | Solvothermal (160 °C; 8 h) | 420 | 683 | 14.0 | [80] |
N | O-phenylenediamine | Deionized water, HCl | Microwave heating (180 °C; 10 min; 1000 W) | independent | 600 | 14.5 | [81] |
N | Citric acid, urea | DMF | Solvothermal (160 °C; 8 h) | 365 | 634 | 22 | [44] |
N | Citric acid | Formamide | Microwave heating (160 °C; 1 h and 120 °C; 1 h; 400 W) | 540 | 640 | 22.9 | [82] |
N | 3,4-diaminobenzoic acid | Ethanol | Solvothermal (200 °C; 12 h) | 580 | 600 | 24.8 | [45] |
N | P-phenylenediamine | Ethanol | Solvothermal (180 °C; 12 h) | 510 | 604 | 26.1 | [15] |
N | Methylene violet, citric acid | Distilled Water | Ultrasonication/ hydrothermal (180 °C; 8 h) | independent | 596 | 26.24 | [83] |
N | O-Phenylenediamine | Deionized water, HNO3 | Hydrothermal; (200 °C; 10 h) | 540 | 630 | 31.54 | [30] |
N, S | Congo red, p-phenylenediamine | DMSO | Hydrothermal (200 °C; 8 h) | 480 | 630 | 39.9 | [35] |
N | L-glutamic acid, o-phenylenediamine | Water, H2SO4 | Solvothermal (210 °C; 10 h) | 634 | 715 | 43.2 | [24] |
N | Citric acid, urea | Formic acid | Solvothermal (160 °C; 4 h) | 510 | 640 | 43.4 | [84] |
N | O-phenylenediamine, terephthalic acid | Ethanol | Solvothermal (180 °C; 12 h) | 600 | 665 | 47.0 | [16] |
N, S | Tobias acid, o-phenylenediamine | Sulfuric acid | Solvothermal (210 °C; 10 h) | 600 | 625, 675 | 50.8 | [43] |
N | Citric acid, Nile blue A | Ethanol, Water | Sonication (10 min)/Solvothermal (200 °C; 5 h) | 540 | 640 | 51 | [62] |
N | Citric acid, ethylenediamine | Formamide | Solvothermal (180 °C; 4 h) | 560 | 627 | 53 | [27] |
- | Dihydroxynaphthalene, KIO4 | Ethanol | Solvothermal (180 °C; 1 h) | 540 | 628 | 53 | [13] |
- | Phloroglucinol | Ethanol, H2SO4 | Solvothermal (200 °C; 5 h) /refluxing | 580 | 598 | 54 | [63] |
N, Si | Citric acid anhydrous | Acetone, N-(β-aminoethyl)-γ-aminopropyl methyldimethoxysilane | Pyrolysis (150 °C; 5 min) | 580 | 640 | 55.05 (in water), 9.6 (solid) | [85] |
N | Resazurin, urea | Ethanol | Ultrasonication/ Solvothermal (200 °C; 8 h) | 592 | 608 | 58.9 | [86] |
- | Resorcinol | Ethanol | Solvothermal (200 °C; 7 h) | 365 | 610 | 72 | [87] |
N | Mulberry leaves | Ethanol, Dichloromethane | Solvothermal (150 °C; 4 h) | 406 | 676 | 72.6 | [65] |
N | N,N-dimethyl-, N,N-diethyl-, N,N-dipropyl-p-PD | DMF | Solvothermal (200 °C; 12 h) | 540–560 | 637–645 | 77.9–86 | [88] |
N | 3,4,9,10-Tetranitroperylene (NaOH treated) | Ethanol | Solvothermal (200 °C; 12 h) | 560 | 610 | 80 | [89] |
N | Tris(4-aminophenyl)amine(tert-butyl hydroperoxide) | Ethanol | Solvothermal (130 °C; 2 h) | 570 | 615 | 80.77 | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bucka, K.; Socha, R.P.; Wojnicki, M. Carbon Quantum Dots as Phosphors in LEDs: Perspectives and Limitations—A Critical Review of the Literature. Electronics 2024, 13, 4481. https://doi.org/10.3390/electronics13224481
Bucka K, Socha RP, Wojnicki M. Carbon Quantum Dots as Phosphors in LEDs: Perspectives and Limitations—A Critical Review of the Literature. Electronics. 2024; 13(22):4481. https://doi.org/10.3390/electronics13224481
Chicago/Turabian StyleBucka, Katarzyna, Robert P. Socha, and Marek Wojnicki. 2024. "Carbon Quantum Dots as Phosphors in LEDs: Perspectives and Limitations—A Critical Review of the Literature" Electronics 13, no. 22: 4481. https://doi.org/10.3390/electronics13224481
APA StyleBucka, K., Socha, R. P., & Wojnicki, M. (2024). Carbon Quantum Dots as Phosphors in LEDs: Perspectives and Limitations—A Critical Review of the Literature. Electronics, 13(22), 4481. https://doi.org/10.3390/electronics13224481