Optimization of Hybrid Energy Systems Based on MPC-LSTM-KAN: A Case Study of a High-Altitude Wind Energy Work Umbrella Control System
Abstract
1. Introduction
1.1. Motivation
1.2. Literature Review
1.3. Contributions of the Paper
1.4. Structure of the Paper
2. Methodology
2.1. MPC
2.2. LSTM
2.3. KAN
2.4. MPC-LSTM-KAN
3. Case Study
3.1. Work Umbrella Model
3.2. Dataset
3.3. Controller Model
4. Results and Discussion
4.1. Simulation Environment
- Simulation Software: Python 3.12;
- Development Environment: PyCharm 2023.3.4 (Community Edition);
- Operating System: Windows 10 (Version 22H2);
- Processor: Intel i5-12400F;
- RAM: 64 GB;
- Storage: 1 TB SSD;
- Graphics Card: NVIDIA GeForce GTX 3060 (Driver Version: 537.13).
4.2. LSTM-KAN
4.3. LSTM-KAN Prediction
4.4. MPC-LSTM-KAN Simulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LSTM | Long Short-Term Memory |
MPC | Model Predictive Control |
KAN | Kolmogorov–Arnold Network |
References
- He, Y.; Guo, S.; Dong, P.; Zhang, Y.; Huang, J.; Zhou, J. A state-of-the-art review and bibliometric analysis on the sizing optimization of off-grid hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2023, 183, 113476. [Google Scholar] [CrossRef]
- Thirunavukkarasu, M.; Sawle, Y.; Lala, H. A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques. Renew. Sustain. Energy Rev. 2023, 176, 113192. [Google Scholar] [CrossRef]
- Ma, J.; Yuan, X. Techno-economic optimization of hybrid solar system with energy storage for increasing the energy independence in green buildings. J. Energy Storage 2023, 61, 106642. [Google Scholar] [CrossRef]
- Huangfu, Y.; Tian, C.; Zhuo, S.; Xu, L.; Li, P.; Quan, S.; Zhang, Y.; Ma, R. An optimal energy management strategy with subsection bi-objective optimization dynamic programming for photovoltaic/battery/hydrogen hybrid energy system. Int. J. Hydrogen Energy 2023, 48, 3154–3170. [Google Scholar]
- Maghami, M.R.; Mutambara, A.G.O. Challenges associated with Hybrid Energy Systems: An artificial intelligence solution. Energy Rep. 2023, 9, 924–940. [Google Scholar] [CrossRef]
- Mohammed, A.; Alsagheer, F.; Ghaithan, A.; Mazher, K. An Optimization of Hybrid Renewable Energy System for Seawater Desalination in Saudi Arabia. In International Journal of Environmental Science and Technology; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–18. [Google Scholar]
- Liu, H.; Fan, A.; Li, Y.; Bucknall, R.; Chen, L. Hierarchical distributed MPC method for hybrid energy management: A case study of ship with variable operating conditions. Renew. Sustain. Energy Rev. 2024, 189, 113894. [Google Scholar]
- Arroyo, J.; Manna, C.; Spiessens, F.; Helsen, L. Reinforced model predictive control (RL-MPC) for building energy management. Appl. Energy 2022, 309, 118346. [Google Scholar] [CrossRef]
- Huang, K.; Wei, K.; Li, F.; Yang, C.; Gui, W. LSTM-MPC: A deep learning based predictive control method for multimode process control. IEEE Trans. Ind. Electron. 2022, 70, 11544–11554. [Google Scholar] [CrossRef]
- Yan, J.; DiMeo, P.; Sun, L.; Du, X. LSTM-based model predictive control of piezoelectric motion stages for high-speed autofocus. IEEE Trans. Ind. Electron. 2022, 70, 6209–6218. [Google Scholar] [CrossRef]
- Wang, H.; Lu, B.; Li, J.; Liu, T.; Xing, Y.; Lv, C.; Cao, D.; Li, J.; Zhang, J.; Hashemi, E. Risk assessment and mitigation in local path planning for autonomous vehicles with LSTM based predictive model. IEEE Trans. Autom. Sci. Eng. 2021, 19, 2738–2749. [Google Scholar] [CrossRef]
- Gunnarsson, B.R.; vanden Broucke, S.; De Weerdt, J. A direct data aware LSTM neural network architecture for complete remaining trace and runtime prediction. IEEE Trans. Serv. Comput. 2023, 16, 2330–2342. [Google Scholar] [CrossRef]
- Sasfi, A.; Zeilinger, M.N.; Köhler, J. Robust adaptive MPC using control contraction metrics. Automatica 2023, 155, 111169. [Google Scholar] [CrossRef]
- Agyeman, B.T.; Nouri, M.; Appels, W.M.; Liu, J.; Shah, S.L. Learning-based multi-agent MPC for irrigation scheduling. Control Eng. Pract. 2024, 147, 105908. [Google Scholar] [CrossRef]
- Lu, L.; Zhao, H.; Liu, X.; Sun, C.; Zhang, X.; Yang, H. MPC-ECMS energy management of extended-range vehicles based on LSTM multi-signal speed prediction. Electronics 2023, 12, 2642. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall PTR: Hoboken, NJ, USA, 1998. [Google Scholar]
- Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.; Soljačić, M.; Hou, T.Y.; Tegmark, M. Kan: Kolmogorov-arnold networks. arXiv 2024, arXiv:2404.19756. [Google Scholar]
- Karnehm, D.; Samanta, A.; Rosenmüller, C.; Neve, A.; Williamson, S. Core Temperature Estimation of Lithium-Ion Batteries Using Long Short-Term Memory (LSTM) Network and Kolmogorov-Arnold Network (KAN). TechRxiv, 2024; preprints. [Google Scholar] [CrossRef]
- Liu, M.; Bian, S.; Zhou, B.; Lukowicz, P. iKAN: Global Incremental Learning with KAN for Human Activity Recognition Across Heterogeneous Datasets. arXiv 2024, arXiv:2406.01646. [Google Scholar]
- Vaca-Rubio, C.J.; Blanco, L.; Pereira, R.; Caus, M. Kolmogorov-arnold networks (kans) for time series analysis. arXiv 2024, arXiv:2405.08790. [Google Scholar]
- Peng, J.; Zhao, X.; Ma, J.; Meng, D.; Jia, S.; Zhang, K.; Gu, C.; Ding, W. State of Health Estimation of Li-Ion Battery via Incremental Capacity Analysis and Internal Resistance Identification Based on Kolmogorov–Arnold Networks. Batteries 2024, 10, 315. [Google Scholar] [CrossRef]
Date | Time | T (°C) | RH (%) | PRCP (mm) | WS(m/s) | SR () |
---|---|---|---|---|---|---|
2023-06-01 | 02:00 | 21.7 | 95.4 | 0 | 3.8 | 0 |
2023-06-01 | 03:00 | 21.7 | 95.3 | 0.1 | 3.9 | 0 |
2023-06-01 | 04:00 | 21.7 | 95.4 | 0.1 | 3.9 | 0 |
2023-06-01 | 05:00 | 22.1 | 93.9 | 0.1 | 4.4 | 50.5 |
2023-06-01 | 06:00 | 23.2 | 90.6 | 0.1 | 4.5 | 200.9 |
2023-06-01 | 07:00 | 25 | 86 | 0.1 | 4.3 | 352.1 |
2023-06-01 | 08:00 | 26.5 | 81 | 0.1 | 4.1 | 496.3 |
2023-06-01 | 09:00 | 27.6 | 77 | 0.1 | 3.9 | 590 |
2023-06-01 | 10:00 | 28.4 | 73.5 | 0.1 | 3.8 | 673 |
2023-06-01 | 11:00 | 29.3 | 69.2 | 0.1 | 3.5 | 811.7 |
2023-06-01 | 12:00 | 30.1 | 65.4 | 0.1 | 3.3 | 869 |
2023-06-01 | 13:00 | 30.6 | 63 | 0.1 | 3.3 | 807.5 |
2023-06-01 | 14:00 | 30.6 | 62.7 | 0.1 | 3.5 | 702.2 |
2023-06-01 | 15:00 | 29.9 | 64.8 | 0.1 | 3.9 | 465.9 |
2023-06-01 | 16:00 | 28.8 | 69.3 | 0.1 | 4.6 | 300.3 |
2023-06-01 | 17:00 | 27.3 | 76 | 0.1 | 5.5 | 144.7 |
2023-06-01 | 18:00 | 25.6 | 83.3 | 0.1 | 5.9 | 25.1 |
2023-06-01 | 19:00 | 24.3 | 88.2 | 0 | 5.8 | 0 |
… | … | … | … | … | … | … |
Parameter | Value |
---|---|
Epochs | 100 |
LSTM-layers | 512-512 |
LSTM-Input-size | 5 |
LSTM-sequence | 24 |
KAN-layers | 4-16-4 |
Algorithm | MAE | RMSE |
---|---|---|
LSTM | 0.1967 | 0.2651 |
LSTM-KAN | 0.1894 | 0.2527 |
LSTM-MLP | 0.1952 | 0.2615 |
Prediction Parameter | MAE | RMSE |
---|---|---|
Solar irradiation | 0.298080 | 0.292719 |
Wind speed | 0.217400 | 0.288138 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, S.; Chen, W.; Jing, X.; Wang, C.; Pan, K.; Cai, H. Optimization of Hybrid Energy Systems Based on MPC-LSTM-KAN: A Case Study of a High-Altitude Wind Energy Work Umbrella Control System. Electronics 2024, 13, 4241. https://doi.org/10.3390/electronics13214241
Gong S, Chen W, Jing X, Wang C, Pan K, Cai H. Optimization of Hybrid Energy Systems Based on MPC-LSTM-KAN: A Case Study of a High-Altitude Wind Energy Work Umbrella Control System. Electronics. 2024; 13(21):4241. https://doi.org/10.3390/electronics13214241
Chicago/Turabian StyleGong, Shuoqi, Wenbo Chen, Xuedong Jing, Chun Wang, Kangyi Pan, and Hongjun Cai. 2024. "Optimization of Hybrid Energy Systems Based on MPC-LSTM-KAN: A Case Study of a High-Altitude Wind Energy Work Umbrella Control System" Electronics 13, no. 21: 4241. https://doi.org/10.3390/electronics13214241
APA StyleGong, S., Chen, W., Jing, X., Wang, C., Pan, K., & Cai, H. (2024). Optimization of Hybrid Energy Systems Based on MPC-LSTM-KAN: A Case Study of a High-Altitude Wind Energy Work Umbrella Control System. Electronics, 13(21), 4241. https://doi.org/10.3390/electronics13214241