Atmospheric Gravity Wave Detection in Low-Light Images: A Transfer Learning Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Low-Light Data
2.2. Deep Learning Model
3. Data Preprocessing
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holton, J.R. The Influence of Gravity Wave Breaking on the General Circulation of the Middle Atmosphere. J. Atmos. Sci. 1983, 40, 2497–2507. [Google Scholar] [CrossRef]
- Fritts, D.C.; Alexander, M.J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 2003, 41, 1–64. [Google Scholar] [CrossRef]
- Alexander, M.J.; Barnet, C. Using satellite observations to constrain parameterizations of gravity wave effects for global models. J. Atmos. Sci. 2007, 64, 1652–1665. [Google Scholar] [CrossRef]
- Vadas, S.L.; Yue, J.; She, C.Y.; Stamus, P.A.; Liu, A.Z. A model study of the effects of winds on concentric rings of gravity waves from a convective plume near Fort Collins on 11 May 2004. J. Geophys. Res. Atmos. 2009, 114, 2156–2202. [Google Scholar] [CrossRef]
- Yue, J.; Vadas, S.L.; She, C.Y.; Nakamura, T.; Reising, S.C.; Liu, H.L.; Stamus, P.; Krueger, D.A.; Lyons, W.; Li, T. Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado. J. Geophys. Res. Atmos. 2009, 114, D06104. [Google Scholar] [CrossRef]
- Miller, S.D.; Straka, W.C.; Yue, J.; Smith, S.M.; Alexander, M.J.; Hoffmann, L.; Setvák, M.; Partain, P.T. Upper atmospheric gravity wave details revealed in nightglow satellite imagery. Proc. Natl. Acad. Sci. USA 2015, 112, E6728–E6735. [Google Scholar] [CrossRef]
- Azeem, I.; Yue, J.; Hoffmann, L.; Miller, S.D.; Straka, W.C.; Crowley, G. Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere. Geophys. Res. Lett. 2015, 42, 7874–7880. [Google Scholar] [CrossRef]
- Azeem, I.; Barlage, M. Atmosphere-ionosphere coupling from convectively generated gravity waves. Adv. Space Res. 2017, 61, 1931–1941. [Google Scholar] [CrossRef]
- Peterson, A.W.; Adams, G.W. OH airglow phenomena during the 5–6 July 1982 total lunar eclipse. Appl. Opt. 1983, 22, 2682–2685. [Google Scholar] [CrossRef]
- Xu, J.; Li, Q.; Yue, J.; Hoffmann, L.; Straka, W.C.; Wang, C.; Liu, M.; Yuan, W.; Han, S.; Miller, S.D. Concentric gravity waves over northern China observed by an airglow imager network and satellites. J. Geophys. Res. Atmos. 2015, 120, 11058–11078. [Google Scholar] [CrossRef]
- Suzuki, S.; Shiokawa, K.; Otsuka, Y.; Ogawa, T.; Nakamura, K.; Nakamura, T. A concentric gravity wave structure in the mesospheric airglow images. J. Geophys. Res. Atmos. 2007, 112, D02102. [Google Scholar] [CrossRef]
- Lai, C.; Jia, Y.; Xu, J.; Yuan, W.; Li, Q.; Liu, X.; Lai, C.; Jia, Y.; Xu, J.; Yuan, W. Detection of large-scale concentric gravity waves from a Chinese airglow imager network. J. Atmos. Sol. -Terr. Phys. 2017, 30, 269–276. [Google Scholar] [CrossRef]
- Chi, W. Recent advances in observation and research of the Chinese Meridian Project. Chin. J. Space Sci. 2018, 38, 640–649. [Google Scholar]
- Lai, C.; Xu, J.; Yue, J.; Yuan, W.; Liu, X.; Li, W.; Li, Q. Automatic extraction of gravity waves from all-sky airglow image based on machine learning. Remote Sens. 2019, 11, 1516. [Google Scholar] [CrossRef]
- Miller, S.D.; Mills, S.P.; Elvidge, C.D.; Lindsey, D.T.; Lee, T.F.; Hawkins, J.D. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities. Proc. Natl. Acad. Sci. USA 2012, 109, 15706–15711. [Google Scholar] [CrossRef]
- Yue, J.; Hoffmann, L.; Alexander, M.J. Simultaneous observations of convective gravity waves from a ground-based airglow imager and the AIRS satellite experiment. J. Geophys. Res. Atmos. 2013, 118, 3178–3191. [Google Scholar] [CrossRef]
- Gupta, S.; Sameer, M.; Mohan, N. Detection of epileptic seizures using convolutional neural network. In Proceedings of the 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 5–7 March 2021; pp. 786–790. [Google Scholar]
- Hubel, D.H.; Wiesel, T.N. Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 1959, 148, 574. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Indolia, S.; Goswami, A.K.; Mishra, S.P.; Asopa, P. Conceptual understanding of convolutional neural network-a deep learning approach. Procedia Comput. Sci. 2018, 132, 679–688. [Google Scholar] [CrossRef]
- Chegeni, M.K.; Rashno, A.; Fadaei, S. Convolution-layer parameters optimization in convolutional neural networks. Knowl. Based Syst. 2023, 261, 110210. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 84–90. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Wu, X.; Liu, R.; Yang, H.; Chen, Z. An xception based convolutional neural network for scene image classification with transfer learning. In Proceedings of the 2020 2nd International Conference on Information Technology and Computer Application (ITCA), Guangzhou, China, 18–20 December 2020; pp. 262–267. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Bhosle, K.; Musande, V. Evaluation of deep learning CNN model for land use land cover classification and crop identification using hyperspectral remote sensing images. J. Indian Soc. Remote Sens. 2019, 47, 1949–1958. [Google Scholar] [CrossRef]
- Wang, C.; Mouche, A.; Tandeo, P.; Stopa, J.; Chapron, B.; Foster, R.; Vandemark, D. Automated geophysical classification of sentinel-1 wave mode sar images through deep-learning. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1776–1779. [Google Scholar]
- Guo, C.; Ai, W.; Hu, S.; Du, X.; Chen, N. Sea surface wind direction retrieval based on convolution neural network and wavelet analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3868–3876. [Google Scholar] [CrossRef]
- Matsuoka, D.; Watanabe, S.; Sato, K.; Kawazoe, S.; Yu, W.; Easterbrook, S. Application of deep learning to estimate atmospheric gravity wave parameters in reanalysis data sets. Geophys. Res. Lett. 2020, 47, e2020GL089436. [Google Scholar] [CrossRef]
- Sreekanth, V.S.; Raghunath, K.; Mishra, D. Deep Kernel Dictionary Learning for detection of wave breaking features in Atmospheric Gravity Waves. Comput. Geosci. 2023, 176, 105361. [Google Scholar] [CrossRef]
- González, J.L.; Chapman, T.; Chen, K.; Nguyen, H.; Chambers, L.; Mostafa, S.A.; Wang, J.; Purushotham, S.; Wang, C.; Yue, J. Atmospheric Gravity Wave Detection Using Transfer Learning Techniques. In Proceedings of the 2022 IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT), Vancouver, WA, USA, 6–9 December 2022; pp. 128–137. [Google Scholar]
- Lee, S.; Chiang, K.; Xiong, X.; Sun, C.; Anderson, S. The S-NPP VIIRS Day-Night Band on-orbit calibration/characterization and current state of SDR products. Remote Sens. 2014, 6, 12427–12446. [Google Scholar] [CrossRef]
- Hillger, D.; Seaman, C.; Liang, C.; Miller, S.; Lindsey, D.; Kopp, T. Suomi NPP VIIRS imagery evaluation. J. Geophys. Res. Atmos. 2014, 119, 6440–6455. [Google Scholar] [CrossRef]
- Hillger, D.; Kopp, T.; Lee, T.; Lindsey, D.; Seaman, C.; Miller, S.; Solbrig, J.; Kidder, S.; Bachmeier, S.; Jasmin, T. First-Light Imagery from Suomi NPP VIIRS. Bull. Am. Meteorol. Soc. 2013, 94, 1019–1029. [Google Scholar] [CrossRef]
- Cao, C.; De Luccia, F.J.; Xiong, X.; Wolfe, R.; Weng, F. Early on-orbit performance of the visible infrared imaging radiometer suite onboard the suomi national polar-orbiting partnership (S-NPP) satellite. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1142–1156. [Google Scholar] [CrossRef]
- Chang, S.G.; Yu, B.; Vetterli, M. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 2000, 9, 1532–1546. [Google Scholar] [CrossRef]
- Kyba, C.C.; Kuester, T.; Sánchez de Miguel, A.; Baugh, K.; Jechow, A.; Hölker, F.; Bennie, J.; Elvidge, C.D.; Gaston, K.J.; Guanter, L. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 2017, 3, e1701528. [Google Scholar] [CrossRef]
Model | Accuracy in % | ||
---|---|---|---|
Train | Validation | Test | |
Inception V3 | 89.7 | 87.9 | 88.2 |
Model | Precision | Recall |
---|---|---|
Inception V3 | 87.9% | 91.1% |
YOLO v10 | 46.7% | 50.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, B.; Hu, S.; Ai, W.; Li, Y. Atmospheric Gravity Wave Detection in Low-Light Images: A Transfer Learning Approach. Electronics 2024, 13, 4030. https://doi.org/10.3390/electronics13204030
Xiao B, Hu S, Ai W, Li Y. Atmospheric Gravity Wave Detection in Low-Light Images: A Transfer Learning Approach. Electronics. 2024; 13(20):4030. https://doi.org/10.3390/electronics13204030
Chicago/Turabian StyleXiao, Beimin, Shensen Hu, Weihua Ai, and Yi Li. 2024. "Atmospheric Gravity Wave Detection in Low-Light Images: A Transfer Learning Approach" Electronics 13, no. 20: 4030. https://doi.org/10.3390/electronics13204030
APA StyleXiao, B., Hu, S., Ai, W., & Li, Y. (2024). Atmospheric Gravity Wave Detection in Low-Light Images: A Transfer Learning Approach. Electronics, 13(20), 4030. https://doi.org/10.3390/electronics13204030