Ka-Band Miniaturized 90 nm Complementary Metal Oxide Semiconductor Wideband Rat-Race Coupler Using Left-Handed and Right-Handed Transmission Lines
Abstract
:1. Introduction
2. Theoretical Analysis and Simulation Results
2.1. Left-Handed Transmission Line Design
2.2. Right-Handed Transmission Line Design
2.3. Left-Handed and Right-Handed Rat-Race Coupler
3. Implementation and Measurement Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eccleston, K.W.; Platt, I.G.; Tan, A.E.-C.; Woodhead, I.M. Fully-printed S-band SRR/wire NRI lens with reduced wire density. In Proceedings of the 2017 Sixth Asia-Pacific Conf. Antennas Propagation, Xi’an, China, 16–19 October 2017; p. 3. [Google Scholar]
- Eccleston, K.W.; Zhou, Y.; Platt, I.G.; Tan, A.E.-C.; Woodhead, I.M. Modelling of the Dielectric Resonator and Metal Strip Based Negative-Refractive-Index Lens. In Proceedings of the 2021 IEEE Asia-Pacific Microw Conference, Brisbane, Australia, 28 November–1 December 2021; pp. 253–255. [Google Scholar]
- Eccleston, K.W.; Zhou, Y.; Platt, I.G.; Tan, A.E.-C.; Woodhead, I.M. Demonstration of a Negative-Refractive-Index Lens Imaging System. In Proceedings of the 2022 Asia-Pacific Microw Conference (APMC), Yokohama, Japan, 29 November–2 December 2022; pp. 901–903. [Google Scholar]
- Eccleston, K.W.; Zhou, Y.; Platt, I.G.; Tan, A.E.-C.; Anton, E.; Woodhead, I.M. Multipixel Metamaterial Lens Imaging System. In Proceedings of the 2022 IEEE Conf. Antenna Measurements Applications (CAMA), Guangzhou, China, 14–17 November 2022; pp. 1–3. [Google Scholar]
- Ren, J.; Gong, S.; Jiang, W. Low-RCS monopolar patch antenna based on a dual-ring metamaterial absorber. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 102–105. [Google Scholar] [CrossRef]
- Shi, X.; Cao, Y.; Hu, Y.; Luo, X.; Yang, H.; Ye, L.H. A high-gain antipodal Vivaldi antenna with director and metamaterial at 1–28 GHz. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 2432–2436. [Google Scholar] [CrossRef]
- Sun, K.; Han, S.; Choi, J.H.; Lee, J.K. Miniaturized active metamaterial resonant antenna with improved radiation performance based on negative-resistance-enhanced CRLH transmission lines. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1162–1165. [Google Scholar] [CrossRef]
- Jia, D.; He, Y.; Ding, N.; Zhou, J.; Du, B.; Zhang, W. Beam-steering flat lens antenna based on multilayer gradient index metamaterials. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1510–1514. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, Y. Metamaterial-based vertically polarized miniaturized beam-steering antenna for reconfigurable sub-6 GHz applications. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 2239–2243. [Google Scholar] [CrossRef]
- Zhao, M.; Zhu, S.; Huang, H.; Hu, D.; Chen, X.; Chen, J.; Zhang, A. Frequency-diverse metamaterial cavity antenna for microwave coincidence imaging. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1103–1107. [Google Scholar] [CrossRef]
- Qiao, Z.; Pan, X.; Zhang, F.; Xu, J. A tunable dual-band metamaterial filter based on the coupling between two crossed SRRs. IEEE Photonics J. 2021, 13, 4600207. [Google Scholar] [CrossRef]
- Hu, F.; Wang, H.; Zhang, X.; Xu, X.; Jiang, W.; Rong, Q.; Zhao, S.; Jiang, M.; Zhang, W.; Han, J. Electrically Triggered Tunable Terahertz Band-Pass Filter Based on VO2 Hybrid Metamaterial. IEEE J. Sel. Top. Quantum Electron 2019, 25, 4700207. [Google Scholar] [CrossRef]
- Brown, J.A.; Barth, S.; Smyth, B.P.; Iyer, A.K. Compact mechanically tunable microstrip bandstop filter with constant absolute bandwidth using an embedded metamaterial-based EBG. IEEE Trans. Microw. Theory Tech. 2020, 68, 4369–4380. [Google Scholar] [CrossRef]
- Guo, F.; Xia, L.; Yang, T.; Xu, R. A Novel Metamaterial Transmission Line with Adjustable Left-Handed Elements and Its Application to H-plane Filter. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 774–776. [Google Scholar] [CrossRef]
- Pirrone, D.; Ferraro, A.; Zografopoulos, D.C.; Fuscaldo, W.; Szriftgiser, P.; Ducournau, G.; Beccherelli, R. Metasurface-based filters for high data rate THz wireless communication: Experimental validation of a 14 Gbps OOK and 104 Gbps QAM-16 wireless link in the 300 GHz band. IEEE Trans. Wirel. Commun. 2022, 21, 8688–8697. [Google Scholar] [CrossRef]
- Liu, H.; Wen, P.; Jiang, H.; He, Y. Wideband and low-loss high-temperature superconducting bandpass filter based on metamaterial stepped-impedance resonator. IEEE Trans. Appl. Supercond. 2016, 26, 1500404. [Google Scholar] [CrossRef]
- Jyothi, M.H.; Bipin, D.V.; Choudhury, B.; Nair, R.U. Design of conformal metamaterial unit cells for invisibility cloaking applications. In Proceedings of the 2016 IEEE Annual India Conference (INDICON), Bangalore, India, 16–8 December 2016; pp. 1–5. [Google Scholar]
- Takano, Y.; Sanada, A. Polarization independent isotropic near-zero-index metamaterials composed of dielectric spheres for 3-D invisibility cloaks. In Proceedings of the 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, 13–16 November 2017; pp. 345–348. [Google Scholar]
- Ramaccia, D.; Sounas, D.; Alu, A.; Toscano, A.; Bilotti, F. Advancements in doppler cloak technology: Manipulation of doppler effect and invisibility for moving objects. In Proceedings of the 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), Crete, Greece, 17–22 September 2016; pp. 295–297. [Google Scholar]
- Wang, X.; Chen, F.; Semouchkina, E. Implementation of low scattering microwave cloaking by all-dielectric metamaterials. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 63–65. [Google Scholar] [CrossRef]
- Chirala, M.K.; Floyd, B.A. Millimeter-wave Lange and ring-hybrid couplers in a silicon technology for E-band applications. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 11–16 June 2006; pp. 1547–1550. [Google Scholar]
- Ding, H.; Lam, K.; Wang, G.; Woods, W.H. On-chip millimeter wave rat-race hybrid and Marchand balun in IBM 0.13 μm BiCMOS technology. In Proceedings of the Asia-Pacific Microwave Conference, Hong Kong, China, 16–20 December 2008; pp. 1–4. [Google Scholar]
- Chirala, M.K.; Nguyen, C. Multilayer design techniques for extremely miniaturized CMOS microwave and millimeter-wave distributed passive circuits. IEEE Trans. Microw. Theory Techn. 2006, 54, 4218–4224. [Google Scholar] [CrossRef]
- Ng, C.Y.; Chongcheawchamnan, M.; Robertson, I.D. Miniature 38 GHz couplers and baluns using multilayer GaAs MMIC technology. In Proceedings of the 33rd European Microwave Conference Proceedings, Munich, Germany, 7–9 October 2003; Volume 3, pp. 1435–1438. [Google Scholar]
- Garay, E.; Huang, M.-Y.; Wang, H. A cascaded self-similar rat-race hybrid coupler architecture and its compact fully integrated Ka-band implementation. In Proceedings of the IEEE/MTT-S International Microwave Symposium-IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 79–82. [Google Scholar]
- Huang, M.-Y.; Wang, H. An ultra-compact folded inductor based mm-wave rat-race coupler in CMOS. In Proceedings of the IEEE MTT-S International Microwave Symposium, San Francisco, CA, USA, 22–27 May 2016; pp. 1–4. [Google Scholar]
- Lin, Y.-S.; Lu, P.-S.; Lu, C.-Y. Miniature V-band rat-race coupler in CMOS using cascaded bridged-T coils. IEEE Trans. Microw. Theory Tech. 2023, 71, 737–749. [Google Scholar] [CrossRef]
- Lin, I.-H.; de Vincentis, M.; Caloz, C.; Itoh, T. Arbitrary dual-band components using composite right/left-handed transmission lines. IEEE Trans. Microw. Theory Tech. 2004, 52, 1142–1149. [Google Scholar] [CrossRef]
- Mao, S.-G.; Chen, S.-L.; Huang, C.-W. Effective electromagnetic parameters of novel distributed left-handed microstrip lines. IEEE Trans. Microw. Theory Techn. 2005, 53, 1515–1521. [Google Scholar]
- Caloz, C.; Itoh, T. Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line. IEEE Trans. Antennas Propag. 2004, 52, 1159–1166. [Google Scholar] [CrossRef]
Process | Center Fractional Bandwidth | Coupled |
Through | Isolation | Return Loss | Phase | Electrical Size | ||
---|---|---|---|---|---|---|---|---|---|
[21] | 130 nm SiGe BiCMOS | 60 GHz/* | 4.1 dB | 5.7 dB | 21 dB | 18 dB | ~1.6 dB | 0.00446 | |
[22] | 130 nm BiCMOS | 60 GHz/10% | 6 dB | 6 dB | 27 dB | 26 dB | ~0 dB | 0.01102 | |
[23] | 250 nm CMOS | 30 GHz/* | 3.1 dB | 5.7 dB | 17 dB | 18 dB | ~2.6 dB | 0.00086 | |
[24] | GaAs | 43 GHz/17% | 5 dB | 5 dB | 28 dB | 20 dB | ~0 dB | 0.0263 | |
[25] | 45 nm SOI CMOS | 33 GHz/** | 5.3 dB | 5.4 dB | 22 dB | 10.5dB | ~0.1 dB | 0.00292 | |
[26] | 130 nm CMOS | 70 GHz/15.7% | 4.1 dB | 4.1 dB | 20 dB | 16.2 dB | ~0 dB | 0.00203 | |
[27] | 180 nm CMOS | 60 GHz/9.8% | 7.07 dB | 6.04 dB | 28 dB | 18.4dB | 1 dB | 0.00292 | |
This work | 90 nm CMOS | 39 GHz/19.4% | 4.4 dB | 4.4 dB | 40 dB | 26 dB | ~0 dB | 0.00101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, J.-Y.; Lo, T.-Y.; Chen, P.-Y.; Wei, T.-Z.; Huang, S.-P.; Tsai, W.-T.; Liou, C.-Y.; Mao, S.-G. Ka-Band Miniaturized 90 nm Complementary Metal Oxide Semiconductor Wideband Rat-Race Coupler Using Left-Handed and Right-Handed Transmission Lines. Electronics 2024, 13, 417. https://doi.org/10.3390/electronics13020417
Chang J-Y, Lo T-Y, Chen P-Y, Wei T-Z, Huang S-P, Tsai W-T, Liou C-Y, Mao S-G. Ka-Band Miniaturized 90 nm Complementary Metal Oxide Semiconductor Wideband Rat-Race Coupler Using Left-Handed and Right-Handed Transmission Lines. Electronics. 2024; 13(2):417. https://doi.org/10.3390/electronics13020417
Chicago/Turabian StyleChang, Je-Yao, Tsu-Yu Lo, Pin-Yen Chen, Tan-Zhi Wei, Shih-Ping Huang, Wei-Ting Tsai, Chong-Yi Liou, and Shau-Gang Mao. 2024. "Ka-Band Miniaturized 90 nm Complementary Metal Oxide Semiconductor Wideband Rat-Race Coupler Using Left-Handed and Right-Handed Transmission Lines" Electronics 13, no. 2: 417. https://doi.org/10.3390/electronics13020417
APA StyleChang, J.-Y., Lo, T.-Y., Chen, P.-Y., Wei, T.-Z., Huang, S.-P., Tsai, W.-T., Liou, C.-Y., & Mao, S.-G. (2024). Ka-Band Miniaturized 90 nm Complementary Metal Oxide Semiconductor Wideband Rat-Race Coupler Using Left-Handed and Right-Handed Transmission Lines. Electronics, 13(2), 417. https://doi.org/10.3390/electronics13020417