SEPIC-Boost-Based Unidirectional PFC Rectifier with Wide Output Voltage Range
Abstract
1. Introduction
2. Analysis of the Operating Principles of the Novel Topology
2.1. Configuration of the Novel Topology
2.2. Mathematical Modeling
3. Control Strategy of the Hybrid Rectifier
3.1. Double Closed-Loop Control Strategy
3.2. Balancing Control of the DC Capacitor Voltage
4. Simulation and Experimental Verifications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gupta, J.; Singh, B. Single-Stage Isolated Bridgeless Charger for Light Electric Vehicle with Improved Power Quality. IEEE Trans. Ind. Appl. 2022, 58, 6357–6367. [Google Scholar] [CrossRef]
- Xu, B.; Yan, Z.; Zhou, W.; Zhang, L.; Yang, H.; Liu, Y.; Liu, L. A Bidirectional Integrated Equalizer Based on the Sepic-Zeta Converter for Hybrid Energy Storage System. IEEE Trans. Power Electron. 2022, 37, 12659–12668. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, X.; Dou, Y.; Ouyang, Z.; Andersen, M. GaN-Based ZVS Bridgeless Dual-SEPIC PFC Rectifier with Integrated Inductors. IEEE Trans. Power Electr. 2021, 36, 11483–11498. [Google Scholar] [CrossRef]
- Gupta, J.; Singh, B. A High Power Factor Rectifier with Excellent Performance Characteristics for Electric Vehicle Charging Applications. IEEE Trans. Ind. Appl. 2023, 59, 1–11. [Google Scholar] [CrossRef]
- Costa, P.J.S.; Ewerling, M.V.M.; Font, C.H.I.; Lazzarin, T.B. Unidirectional Three-Phase Voltage-Doubler SEPIC PFC Rectifier. IEEE Trans. Power Electr. 2021, 36, 6761–6773. [Google Scholar] [CrossRef]
- Gonçalves, J.T.; Valtchev, S.; Melicio, R.; Gonçalves, A.; Blaabjerg, F. Hybrid Three-Phase Rectifiers with Active Power Factor Correction: A Systematic Review. Electronics 2021, 10, 1520. [Google Scholar] [CrossRef]
- Chen, J.; Chang, C. Analysis and Design of SEPIC Converter in Boundary Conduction Mode for Universal-Line Power Factor Correction Applications. In Proceedings of the 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230), Vancouver, BC, Canada, 17–21 June 2001; Volume 2, pp. 742–747. [Google Scholar]
- Kwon, J.-M.; Choi, W.-Y.; Lee, J.-J.; Kim, E.-H.; Kwon, B.-H. Continuous-Conduction-Mode SEPIC Converter with Low Reverse-Recovery Loss for Power Factor Correction. IEE Proc. Electr. Power Appl. 2006, 153, 673–681. [Google Scholar] [CrossRef]
- Hosseinabadi, F.; Adib, E. A Soft-Switching Step-Down PFC Converter with Output Voltage Doubler and High Power Factor. IEEE Trans. Power Electr. 2019, 34, 416–424. [Google Scholar] [CrossRef]
- Vo, D.-V.; Nguyen, K.M.; Lim, Y.-C.; Choi, J.-H. A Single-Stage Bimodal Transformerless Inverter with Common-Ground and Buck-Boost Features. Electronics 2023, 12, 221. [Google Scholar] [CrossRef]
- Cortez, D.F.; Barbi, I. A Family of High-Voltage Gain Single-Phase Hybrid Switched-Capacitor PFC Rectifiers. IEEE Trans. Power Electr. 2015, 30, 4189–4198. [Google Scholar] [CrossRef]
- Jin, Q.; Ruan, X.; Ren, X.; Wang, Y.; Leng, Y. Step-Wave Switched Capacitor Converter for Compact Design of Envelope Tracking Power Supply. IEEE Trans. Ind. Electron. 2017, 64, 9587–9591. [Google Scholar] [CrossRef]
- He, L.; Lin, Z.; Tan, Q.; Lu, F.; Zeng, T. Interleaved High Step-Up Current Sharing Converter with Coupled Inductors. Electronics 2021, 10, 436. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Ajami, A.; Babaei, E.; Soleimanifard, J. Theoretical and Experimental Evaluation of SEPIC-Based DC–DC Converters with Two-Winding and Three-Winding Coupled Inductors. Int. J. Circ. Theor. Appl. 2022, 50, 3891–3910. [Google Scholar] [CrossRef]
- Lee, S.-W.; Do, H.-L. High Step-Up Coupled-Inductor Cascade Boost DC–DC Converter with Lossless Passive Snubber. IEEE Trans. Ind. Electron. 2018, 65, 7753–7761. [Google Scholar] [CrossRef]
- Chincholkar, S.H.; Chan, C.-Y. Investigation of Current-Mode Controlled Cascade Boost Converter Systems: Dynamics and Stability Issues. IET Power Electron. 2016, 9, 911–920. [Google Scholar] [CrossRef]
- Kim, T.; Feng, D.; Jang, M.; Agelidis, V.G. Common Mode Noise Analysis for Cascaded Boost Converter with Silicon Carbide Devices. IEEE Trans. Power Electr. 2017, 32, 1917–1926. [Google Scholar] [CrossRef]
- Maroti, P.K.; Padmanaban, S.; Holm-Nielsen, J.B.; Sagar Bhaskar, M.; Meraj, M.; Iqbal, A. A New Structure of High Voltage Gain SEPIC Converter for Renewable Energy Applications. IEEE Access 2019, 7, 89857–89868. [Google Scholar] [CrossRef]
- Rivera, S.; Wu, B.; Kouro, S.; Yaramasu, V.; Wang, J. Electric Vehicle Charging Station Using a Neutral Point Clamped Converter with Bipolar DC Bus. IEEE Trans. Ind. Electron. 2015, 62, 1999–2009. [Google Scholar] [CrossRef]
- Bang, T.; Park, J.-W. Development of a ZVT-PWM Buck Cascaded Buck–Boost PFC Converter of 2 kW with the Widest Range of Input Voltage. IEEE Trans. Ind. Electron. 2018, 65, 2090–2099. [Google Scholar] [CrossRef]
- Sharifi, S.; Monfared, M.; Babaei, M. Ferdowsi Rectifiers—Single-Phase Buck-Boost Bridgeless PFC Rectifiers with Low Semiconductor Count. IEEE Trans. Ind. Electron. 2020, 67, 9206–9214. [Google Scholar] [CrossRef]
- Sharifi, S.; Babaei, M.; Monfared, M. A High Gain Buck PFC Synchronous Rectifier. In Proceedings of the Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 8–10 May 2018; pp. 1185–1190. [Google Scholar]
- de Melo, P.F.; Gules, R.; Romaneli, E.F.R.; Annunziato, R.C. A Modified SEPIC Converter for High-Power-Factor Rectifier and Universal Input Voltage Applications. IEEE Trans. Power Electr. 2010, 25, 310–321. [Google Scholar] [CrossRef]
- Costa, P.J.S.; Illa Font, C.H.; Lazzarin, T.B. Single-Phase Hybrid Switched-Capacitor Voltage-Doubler SEPIC PFC Rectifiers. IEEE Trans. Power Electr. 2018, 33, 5118–5130. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Yao, Z.; Li, T.; Peng, Z. Circulating Current Suppressing Strategy for MMC-HVDC Based on Nonideal Proportional Resonant Controllers Under Unbalanced Grid Conditions. IEEE Trans. Power Electr. 2015, 30, 387–397. [Google Scholar] [CrossRef]
Modes | S1 | S2 | L2 | Cb | Co1 | Co2 | vi |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | C | D | D | D | 0 |
2 | 1 | 0 | C | D | D | C | vo2 |
3 | 0 | 1 | D | C | C | D | vo1 + vb |
4 | 0 | 0 | D | C | C | C | vo1 + vo2 + vb |
System Rating and Parameters | |
power rating P | 500 W 155 V |
amplitude of phase-voltage vs | |
the DC-link voltage vo | 200 V (Boost) 120 V (Buck) |
switching frequency f | 10 kHz |
input side inductance L1 | 3 mH |
output side inductance L2 | 2 mH |
DC-link capacitors Co1 and Co2 | 470μF |
output side capacitor Cb | 47μF |
Controller Parameters | |
input current controller’s bandwidth | 1 kHz |
DC-link voltage controller’s bandwidth | 40 Hz |
DC capacitor voltage controller’s bandwidth | 10 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.; Li, X.; Wang, C.; Zhao, Z.; Shen, Y.; Yuan, W. SEPIC-Boost-Based Unidirectional PFC Rectifier with Wide Output Voltage Range. Electronics 2024, 13, 357. https://doi.org/10.3390/electronics13020357
Cheng H, Li X, Wang C, Zhao Z, Shen Y, Yuan W. SEPIC-Boost-Based Unidirectional PFC Rectifier with Wide Output Voltage Range. Electronics. 2024; 13(2):357. https://doi.org/10.3390/electronics13020357
Chicago/Turabian StyleCheng, Hong, Xin Li, Cong Wang, Zhihao Zhao, Yucheng Shen, and Wei Yuan. 2024. "SEPIC-Boost-Based Unidirectional PFC Rectifier with Wide Output Voltage Range" Electronics 13, no. 2: 357. https://doi.org/10.3390/electronics13020357
APA StyleCheng, H., Li, X., Wang, C., Zhao, Z., Shen, Y., & Yuan, W. (2024). SEPIC-Boost-Based Unidirectional PFC Rectifier with Wide Output Voltage Range. Electronics, 13(2), 357. https://doi.org/10.3390/electronics13020357