A New Link Adaptation Technique for Very High Frequency Data Exchange System in Future Maritime Communication
Abstract
1. Introduction
2. VDES and Maritime Wireless Channel
2.1. VHF Data Exchange System
2.2. Maritime Wireless Channel
3. New Link Adaption Technique in Maritime Environment
3.1. Link Adaptation
3.2. Maritime Auto-Rate Fall-Back
Algorithm 1. Pseudocode for MCS adaptation procedure in mARF. |
MCSnext:= MCScurrent; MCShigh:= the MCS type higher than MCScurrent; MCSlow:= the lowest MCS type among MCS profile; MCSthr:= MCStype3 attempt_success:= 0; while (MCSnext:= MCScurrent || attempt_success == 0) { if (xmit_success(MCSnext) == 0) then MCSnext:= MCSlow /rate decreasing attempt by fast drop-out/ else { attempt_success:= attempt_success + 1; if (attempt_success ≥ n) then { MCSnext:= MCShigh /rate increasing attempt by fast recovery/ break; }} if (MCSnext == MCSthr) then attempt_success:= attempt_success/2; else attempt_success:= attempt_success; } |
4. Performance Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, T.; Feng, W.; Chen, Y.; Wang, C.X.; Ge, N.; Lu, J. Hybrid satellite-terrestrial communication networks for the maritime Internet of Things: Key technologies, opportunities, and challenges. IEEE Internet Things J. 2021, 8, 8910–8934. [Google Scholar] [CrossRef]
- Zolich, A.; Palma, D.; Kansanen, K.; Fjørtoft, K.; Sousa, J.; Johansson, K.H.; Johansen, T.A. Survey on communication and networks for autonomous marine systems. J. Intell. Robot. Syst. 2019, 95, 789–813. [Google Scholar] [CrossRef]
- Aslam, S.; Michaelides, M.P.; Herodotou, H. Internet of ships: A survey on architectures, emerging applications, and challenges. IEEE Internet Things J. 2020, 7, 9714–9727. [Google Scholar] [CrossRef]
- ITU-R. Automatic Identification System VHF Data Link Loading; ITU-R M. 2287-0; ITU: Geneva, Switzerland, 2014. [Google Scholar]
- Anwar, S.M.; Goron, E.; Toutain, Y.; Péronne, J.P.; Héthuin, S. LTE terminal for maritime applications. In Proceedings of the 2013 Military Communications and Information Systems Conference, Saint-Malo, France, 7–9 October 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–4. [Google Scholar]
- Xu, Y. Quality of service provisions for maritime communications based on cellular networks. IEEE Access 2017, 5, 23881–23890. [Google Scholar] [CrossRef]
- Lopes, M.J.; Teixeira, F.; Mamede, J.B.; Campos, R. Wi-Fi broadband maritime communications using 5.8 GHz band. In Proceedings of the 2014 Underwater Communications and Networking (UComms), Sestri Levante, Italy, 3–5 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Campos, R.; Oliveira, T.; Cruz, N.; Matos, A.; Almeida, J.M. BLUECOM+: Cost-effective broadband communications at remote ocean areas. In Proceedings of the OCEANS 2016-Shanghai, Shanghai, China, 10–13 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Teixeira, F.B.; Oliveira, T.; Lopes, M.; Ruela, J.; Campos, R.; Ricardo, M. Tethered balloons and TV white spaces: A solution for real-time marine data transfer at remote ocean areas. In Proceedings of the 2016 IEEE Third Underwater Communications and Networking Conference (UComms), Lerici, Italy, 30 August–1 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar] [CrossRef]
- International Telecommunication Union. Technical Characteristic for a VHF Data Exchange System in the VHF Maritime Mobile Band; Recommendation ITU-R M.2092-0+; ITU: Geneva, Switzerland, 2015. [Google Scholar]
- Molina, N.; Cabrera, F.; Araña, V.; Tichavska, M. An overview about the physical layer of the vhf data exchange system (vdes). In Computer Aided Systems Theory—EUROCAST 2019; EUROCAST 2019; Lecture Notes in Computer Science; Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Lázaro, F.; Raulefs, R.; Wang, W.; Clazzer, F.; Plass, S. VHF Data Exchange System (VDES): An enabling technology for maritime communications. CEAS Space J. 2019, 11, 55–63. [Google Scholar] [CrossRef]
- Cao, Y.; Ohtsuki, T.; Maghsudi, S.; Quek, T.Q. Deep Learning and Image Super-Resolution-Guided Beam and Power Allocation for mmWave Networks. IEEE Trans. Veh. Technol. 2023, 72, 15080–15085. [Google Scholar] [CrossRef]
- Echigo, H.; Cao, Y.; Bouazizi, M.; Ohtsuki, T. A deep learning-based low overhead beam selection in mmWave communications. IEEE Trans. Veh. Technol. 2021, 70, 682–691. [Google Scholar] [CrossRef]
- Rinaldo, R.; Gaudenzi, R.D. Capacity Analysis and System Optimization for the Forward Link of Multi-Beam Satellite Broadband Systems Exploiting Adaptive Coding and Modulation. Int. J. Satell. Commun. Netw. 2004, 22, 401–423. [Google Scholar] [CrossRef]
- Rinaldo, R.; Gaudenzi, R.D. Capacity Analysis and System Optimization for the Reverse Link of Multi-Beam Satellite Broadband Systems Exploiting Adaptive Coding and Modulation. Int. J. Satell. Commun. Netw. 2004, 22, 425–448. [Google Scholar] [CrossRef]
- Cioni, S.; De Gaudenzi, R.; Rinaldo, R. Channel Estimation and Physical Layer Adaptation Techniques for Satellite Networks Exploiting Adaptive Coding and Modulation. Int. J. Satell. Commun. Netw. 2008, 26, 157–188. [Google Scholar] [CrossRef]
- Xu, C.; Xiang, L.; An, J.; Dong, C.; Sugiura, S.; Maunder, R.G.; Yang, L.L.; Hanzo, L. OTFS-aided RIS-assisted SAGIN systems outperform their OFDM counterparts in doubly selective high-Doppler scenarios. IEEE Internet Things J. 2022, 10, 682–703. [Google Scholar] [CrossRef]
- IALA Guideline G1117: VHF Data Exchange System (VDES) Overview Edition 3.0. Available online: https://www.iala-aism.org/product/g1117/ (accessed on 1 December 2023).
- MSC. 1/Circ.1595—E-Navigation Strategy Implementation Plan—Update 1; IMO: London, UK, 2018. [Google Scholar]
- Lee, Y.H.; Meng, Y.S. Key considerations in the modeling of tropical maritime microwave attenuations. Int. J. Antennas Propag. 2015, 2015, 246793. [Google Scholar] [CrossRef]
- Maliatsos, K.; Loulis, P.; Chronopoulos, M.; Constantinou, P.; Dallas, P.; Ikonomou, M. Measurements and wideband channel characterization for over-the-sea propagation. In Proceedings of the 2006 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, Montreal, QC, Canada, 19–21 June 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 237–244. [Google Scholar] [CrossRef]
- Timmins, I.; O’Young, S. Marine Communications Channel Modeling Using the Finite-Difference Time Domain Method. IEEE Transaction. Veh. Technol. 2008, 58, 2626–2637. [Google Scholar] [CrossRef]
- Yang, K.; Roste, T.; Ekman, T. Experimental multipath delay profile of mobile radio channels over sea at 2 GHz. In Proceedings of the 2012 Loughborough Antennas and Propagations Conference, Loughborough, UK, 12–13 November 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Zaidi, K.S.; Jeoti, V.; Drieberg, M.; Awang, A.; Iqbal, A. Fading characteristics in evaporation duct: Fade margin for a wireless link in the South China Sea. IEEE Access 2018, 6, 11038–11045. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, H.; Li, Y.; Sun, Q.; Wu, Y.; Jin, S.; Quek, T.Q.; Xu, C. Wireless channel models for maritime communications. IEEE Access 2018, 6, 68070–68088. [Google Scholar] [CrossRef]
- Meng, Y.S.; Lee, Y.H. Measurements and characterizations of air-to-ground channel over sea surface at C-band with low airborne altitudes. IEEE Trans. Veh. Technol. 2011, 60, 1943–1948. [Google Scholar] [CrossRef]
- Holland, G.; Vaidya, N.; Bahl, P. A rate-adaptive MAC protocol for multi-hop wireless networks. In Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, Association for Computing Machinery, New York, NY, USA, 16 July 2001; pp. 236–251. [Google Scholar] [CrossRef]
- Kamerman, A.; Monteban, L. WaveLAN®-II: A high-performance wireless LAN for the unlicensed band. Bell Labs Tech. J. 1997, 2, 118–133. [Google Scholar] [CrossRef]
- Tse, D.; Viswanath, P. Fundamentals of Wireless Communication; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar] [CrossRef]
- Goldsmith, A. Wireless Communications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar] [CrossRef]
Link Config ID | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
---|---|---|---|---|---|---|---|---|---|
Channel BW (kHz) | 25 | 25 | 25 | 50 | 50 | 50 | 100 | 100 | 100 |
Symbol rate (ksps) | 19.2 | 19.2 | 19.2 | 38.4 | 38.4 | 38.4 | 76.8 | 76.8 | 76.8 |
FEC rate | 1/2 | 3/4 | 3/4 | 1/2 | 3/4 | 3/4 | 1/2 | 3/4 | 3/4 |
Modulation | π/4 QPSK | 8 PSK | 16 QAM | π/4 QPSK | 8 PSK | 16 QAM | π/4 QPSK | 8 PSK | 16 QAM |
Modulation | SER |
---|---|
π/4 QPSK | |
8 PSK | |
16 QAM |
Parameter | Value | |
---|---|---|
Carrier frequency (MHz) | 160 | |
TX power (EIRP) (W) | 12.5 | |
Height of effective evaporation (m) | 12 | |
Channel BW (kHz) | B | 100 |
Receiver antenna gain (dB) | 0 | |
Receiver noise power spectral density (dBm/Hz) | −150 | |
Receiver noise figure (dB) | F | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, W.; Kim, B.; Kim, E.-J.; Kim, D. A New Link Adaptation Technique for Very High Frequency Data Exchange System in Future Maritime Communication. Electronics 2024, 13, 323. https://doi.org/10.3390/electronics13020323
Shim W, Kim B, Kim E-J, Kim D. A New Link Adaptation Technique for Very High Frequency Data Exchange System in Future Maritime Communication. Electronics. 2024; 13(2):323. https://doi.org/10.3390/electronics13020323
Chicago/Turabian StyleShim, Wooseong, Buyoung Kim, Eui-Jik Kim, and Dongwan Kim. 2024. "A New Link Adaptation Technique for Very High Frequency Data Exchange System in Future Maritime Communication" Electronics 13, no. 2: 323. https://doi.org/10.3390/electronics13020323
APA StyleShim, W., Kim, B., Kim, E.-J., & Kim, D. (2024). A New Link Adaptation Technique for Very High Frequency Data Exchange System in Future Maritime Communication. Electronics, 13(2), 323. https://doi.org/10.3390/electronics13020323