Degradation-Aware Derating of Lithium-Ion Battery Energy Storage Systems in the UK Power Market
Abstract
1. Introduction
1.1. Literature Review
1.2. Contribution
2. Materials and Methods
2.1. Case Study Development
2.2. Battery Degradation Model
2.3. Degradation-Aware Derating Strategy
2.4. Economic Analysis
3. Results
3.1. Battery Degradation
3.2. Sensitivity Analysis: Degradation Rates
3.3. Economic Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arias, P.; Bellouin, N.; Coppola, E.; Jones, R.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.; Plattner, G.K.; Rogelj, J.; et al. (Eds.) Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Eyring, V.; Gillett, N.P.; Achutarao, K.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.; Kosaka, Y.; McGregor, S.; et al. Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- ‘Plans Unveiled to Decarbonise UK Power System by 2035’, GOV.UK. Available online: https://www.gov.uk/government/news/plans-unveiled-to-decarbonise-uk-power-system-by-2035 (accessed on 12 April 2022).
- Department for Business, Energy & Industrial Strategy (BEIS). Contracts for Difference for Low Carbon Electricity Generation: Government Response to Consultation on Proposed Amendments to the Scheme; BEIS: London, UK, 2020. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/937634/cfd-proposed-amendments-scheme-2020-ar4-government-response.pdf (accessed on 12 June 2022).
- ‘Tracking Clean Energy Progress 2023’, IEA. Available online: https://www.iea.org/reports/tracking-clean-energy-progress-2023 (accessed on 29 January 2022).
- Barreras, J.V.; Schimpe, M.; Alberti, S.D.V. Energy Storage in Distribution Power Systems; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- DOE Global Energy Storage Database. Available online: https://catalog.data.gov/dataset/doe-global-energy-storage-database/resource/a0231b05-c7b6-4aa8-b012-c100b7a18e96 (accessed on 17 February 2022).
- Mexis, I.; Todeschini, G. Battery Energy Storage Systems in the United Kingdom: A Review of Current State-of-the-Art and Future Applications. Energies 2020, 13, 3616. [Google Scholar] [CrossRef]
- The Growing Impact of Location on Battery Energy Storage in GB. Available online: https://modoenergy.com/research/gb-mapping-locational-battery-energy-storage-impacts-transmission-constraints (accessed on 12 June 2022).
- Reniers, J.M.; Mulder, G.; Ober-Blöbaum, S.; Howey, D.A. Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling. J. Power Sources 2018, 379, 91–102. [Google Scholar] [CrossRef]
- Gräf, D.; Marschewski, J.; Ibing, L.; Huckebrink, D.; Fiebrandt, M.; Hanau, G.; Bertsch, V. What drives capacity degradation in utility-scale battery energy storage systems? The impact of operating strategy and temperature in different grid applications. J. Energy Storage 2021, 47, 103533. [Google Scholar] [CrossRef]
- Barré, A.; Deguilhem, B.; Grolleau, S.; Gérard, M.; Suard, F.; Riu, D. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 2013, 241, 680–689. [Google Scholar] [CrossRef]
- Peterson, S.B.; Apt, J.; Whitacre, J.F. Lithium-ion battery cell degradation resulting from realistic vehicle and vehicle-to-grid utilization. J. Power Sources 2010, 195, 2385–2392. [Google Scholar] [CrossRef]
- Schmalstieg, J.; Käbitz, S.; Ecker, M.; Sauer, D.U. ‘A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries. J. Power Sources 2014, 257, 325–334. [Google Scholar] [CrossRef]
- Shi, Y.; Smith, K.; Zane, R.; Anderson, D. Life prediction of large lithium-ion battery packs with active and passive balancing. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 4704–4709. [Google Scholar] [CrossRef]
- Schimpe, M.; Barreras, J.V.; Wu, B.; Offer, G.J. Battery Degradation-Aware Current Derating: An Effective Method to Prolong Lifetime and Ease Thermal Management. J. Electrochem. Soc. 2021, 168, 060506. [Google Scholar] [CrossRef]
- Shahjalal, M.; Shams, T.; Islam, M.E.; Alam, W.; Modak, M.; Hossain, S.B.; Ramadesigan, V.; Ahmed, M.R.; Ahmed, H.; Iqbal, A. A review of thermal management for Li-ion batteries: Prospects, challenges, and issues. J. Energy Storage 2021, 39, 102518. [Google Scholar] [CrossRef]
- Wu, W.; Wang, S.; Wu, W.; Chen, K.; Hong, S.; Lai, Y. A critical review of battery thermal performance and liquid based battery thermal management. Energy Convers. Manag. 2019, 182, 262–281. [Google Scholar] [CrossRef]
- Olabi, A.G.; Maghrabie, H.M.; Adhari, O.H.K.; Sayed, E.T.; Yousef, B.A.; Salameh, T.; Kamil, M.; Abdelkareem, M.A. Battery thermal management systems: Recent progress and challenges. J. Energy Storage 2020, 32, 101803. [Google Scholar] [CrossRef]
- Khan, M.R.; Swierczynski, M.J.; Kær, S.K. Towards an ultimate battery thermal management system: A review. Batteries 2017, 3, 9. [Google Scholar] [CrossRef]
- Wang, Z.; Du, C. A comprehensive review on thermal management systems for power lithium-ion batteries. Appl. Therm. Eng. 2019, 158, 113761. [Google Scholar] [CrossRef]
- Akbarzadeh, M.; Kalogiannis, T.; Jaguemont, J.; Jin, L.; Behi, H.; Karimi, D.; Beheshti, H.; Van Mierlo, J.; Berecibar, M. A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module. Appl. Therm. Eng. 2021, 198, 117503. [Google Scholar] [CrossRef]
- Garcia, F.S.; Ferreira, A.A.; Pomilio, J.A. Control Strategy for Battery-Ultracapacitor Hybrid Energy Storage System. In Proceedings of the 2009 Twenty–Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA, 15–19 February 2009; pp. 826–832. [Google Scholar] [CrossRef]
- Choi, M.-E.; Kim, S.-W.; Seo, S.-W. Energy Management Optimization in a Battery/Supercapacitor Hybrid Energy Storage System. IEEE Trans. Smart Grid 2012, 3, 463–472. [Google Scholar] [CrossRef]
- Şahin, M.E.; Blaabjerg, F.; Sangwongwanich, A. A Comprehensive Review on Supercapacitor Applications and Developments. Energies 2022, 15, 674. [Google Scholar] [CrossRef]
- Cao, J.; Emadi, A. A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles. IEEE Trans. Power Electron. 2012, 27, 122–132. [Google Scholar] [CrossRef]
- Frost, D.F.; Howey, D.A. Completely Decentralized Active Balancing Battery Management System. IEEE Trans. Power Electron. 2018, 33, 729–738. [Google Scholar] [CrossRef]
- Barreras, J.V.; Raj, T.; Howey, D.A. Derating Strategies for Lithium-Ion Batteries in Electric Vehicles. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 4956–4961. [Google Scholar] [CrossRef]
- Sun, Y.; Saxena, S.; Pecht, M. Derating Guidelines for Lithium-Ion Batteries. Energies 2018, 11, 3295. [Google Scholar] [CrossRef]
- Sowe, J.; Barreras, J.V.; Schimpe, M.; Wu, B.; Candelise, C.; Nelson, J.; Few, S. Model-informed battery current derating strategies: Simple methods to extend battery lifetime in islanded mini-grids. J. Energy Storage 2022, 51, 104524. [Google Scholar] [CrossRef]
- Mathews, I.; Xu, B.; He, W.; Barreto, V.; Buonassisi, T.; Peters, I.M. Technoeconomic model of second-life batteries for utility-scale solar considering calendar and cycle aging. Appl. Energy 2020, 269, 115127. [Google Scholar] [CrossRef]
- Kumtepeli, V.; Zhao, Y.; Naumann, M.; Tripathi, A.; Wang, Y.; Jossen, A.; Hesse, H. Design and analysis of an aging-aware energy management system for islanded grids using mixed-integer quadratic programming. Int. J. Energy Res. 2019, 43, 4127–4147. [Google Scholar] [CrossRef]
- Lee, J.-O.; Kim, Y.-S. Novel battery degradation cost formulation for optimal scheduling of battery energy storage systems. Int. J. Electr. Power Energy Syst. 2022, 137, 107795. [Google Scholar] [CrossRef]
- Wankmüller, F.; Thimmapuram, P.R.; Gallagher, K.G.; Botterud, A. Impact of battery degradation on energy arbitrage revenue of grid-level energy storage. J. Energy Storage 2017, 10, 56–66. [Google Scholar] [CrossRef]
- Li, R.; Hassan, A.; Gupte, N.; Su, W.; Zhou, X. Degradation Prediction and Cost Optimization of Second-Life Battery Used for Energy Arbitrage and Peak-Shaving in an Electric Grid. Energies 2023, 16, 6200. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, J.; He, W. Energy arbitrage optimization of lithium-ion battery considering short-term revenue and long-term battery life loss. Energy Rep. 2022, 8, 364–371. [Google Scholar] [CrossRef]
- García-Miguel, P.L.C.; Alonso-Martínez, J.; Arnaltes Gómez, S.; García Plaza, M.; Asensio, A.P. A review on the degradation implementation for the operation of battery energy storage systems. Batteries 2022, 8, 110. [Google Scholar] [CrossRef]
- Klein, R.; Chaturvedi, N.A.; Christensen, J.; Ahmed, J.; Findeisen, R.; Kojic, A. Optimal charging strategies in lithium-ion battery. In Proceedings of the 2011 American Control Conference, San Francisco, CA, USA, 29 June–1 July 2011; pp. 382–387. [Google Scholar]
- Yin, Y.; Bi, Y.; Hu, Y.; Choe, S.-Y. Optimal Fast Charging Method for a Large-Format Lithium-Ion Battery Based on Nonlinear Model Predictive Control and Reduced Order Electrochemical Model. J. Electrochem. Soc. 2020, 167, 160559. [Google Scholar] [CrossRef]
- Energy Storage Capacity Warranties: Beyond the Fine Print. Available online: https://www.dnv.com/article/energy-storage-capacity-warranties-beyond-the-fine-print-200339 (accessed on 23 June 2022).
- Robson, P.; Bonomi, D. Growing the Battery Storage Market 2018: Exploring Four Key Issues. Energy Storage World Forum. White Paper. 2018. Available online: https://energystorageforum.com/download-whitepaper (accessed on 10 July 2022).
- U.S. Department of Energy. Fact #913: 22 February 2016—The Most Common Warranty for Plug—In Vehicle Batteries Is 8 Years/100,000 Miles. Available online: https://www.energy.gov/eere/vehicles/fact-913-february-22-2016-most-common-warranty-plug-vehicle-batteries-8-years100000 (accessed on 5 May 2022).
- Seel, J.; Warner, C.; Mills, A.D. Influence of Business Models on PV-Battery Dispatch Decisions and Market Value; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 2021. Available online: https://www.osti.gov/biblio/1825924 (accessed on 12 May 2022).
- Schimpe, M.; von Kuepach, M.E.; Naumann, M.; Hesse, H.C.; Smith, K.; Jossen, A. Comprehensive Modeling of Temperature-Dependent Degradation Mechanisms in Lithium Iron Phosphate Batteries. J. Electrochem. Soc. 2018, 165, A181. [Google Scholar] [CrossRef]
- Maheshwari, A.; Paterakis, N.G.; Santarelli, M.; Gibescu, M. Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model. Appl. Energy 2020, 261, 114360. [Google Scholar] [CrossRef]
- Foundation, V. The Battery Report 2023. Volta Foundation 2023. Available online: https://volta.foundation/battery-report (accessed on 13 September 2024).
- Schimpe, M.; Naumann, M.; Truong, N.; Hesse, H.C.; Santhanagopalan, S.; Saxon, A.; Jossen, A. Energy efficiency evaluation of a stationary lithium-ion battery container storage system via electro-thermal modeling and detailed component analysis. Appl. Energy 2018, 210, 211–229. [Google Scholar] [CrossRef]
- Sioshansi, R.; Denholm, P.; Jenkin, T.; Weiss, J. Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects. Energy Econ. 2009, 31, 269–277. [Google Scholar] [CrossRef]
- Byrne, R.H.; Silva-Monroy, C.A. Potential revenue from electrical energy storage in the Electricity Reliability Council of Texas (ERCOT). In Proceedings of the 2014 IEEE PES General Meeting|Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014; pp. 1–5. [Google Scholar] [CrossRef]
- ENTSO-E. Day-Ahead Prices. Transparency Platform. Available online: https://transparency.entsoe.eu/transmission-domain/r2/dayAheadPrices/show?name=&defaultValue=true&viewType=GRAPH&areaType=BZN&atch=false&dateTime.dateTime=26.09.2024+00:00|CET|DAY&biddingZone.values=CTY|10YAL-KESH-----5!BZN|10YAL-KESH-----5&resolution.va (accessed on 17 July 2023).
- Núñez, F.; Canca, D.; Arcos-Vargas, A. An assessment of European electricity arbitrage using storage systems. Energy 2022, 242, 122916. [Google Scholar] [CrossRef]
- Renewables.ninja. Available online: https://www.renewables.ninja/ (accessed on 17 July 2023).
- Naumann, M.; Spingler, F.B.; Jossen, A. Analysis and modeling of cycle aging of a commercial LiFePO4/graphite cell. J. Power Sources 2020, 451, 227666. [Google Scholar] [CrossRef]
- Few, S.; Schmidt, O.; Gambhir, A. Energy access through electricity storage: Insights from technology providers and market enablers. Energy Sustain. Dev. 2019, 48, 1–10. [Google Scholar] [CrossRef]
- 2020 Grid Energy Storage Technology Cost and Performance Assessment, Energy.gov. Available online: https://www.energy.gov/energy-storage-grand-challenge/downloads/2020-grid-energy-storage-technology-cost-and-performance (accessed on 27 August 2022).
Scenario | Operational Strategy | Thermal Management |
---|---|---|
Base Case |
| Active |
Warranty 1 |
| Active |
Warranty 2 |
| Active |
Derated |
| No active thermal management |
Optimal Derated |
| No active thermal management |
Optimal Derated + Active TM |
| Active |
Parameter | Value | Source |
---|---|---|
CAPEX (£/kWh) | 350 | [54] |
OPEX (£/kW per annum) | 3.65 | [55] |
Base Case | Warranty 1 | Warranty 2 | Derated | Optimal Derated | Optimal Derated + Active TM | |
---|---|---|---|---|---|---|
Total FEC | 17,061 | 9878 | 3920 | 9547 | 11,401 | 15,526 |
Max Charging C-rate (C) | 1.0 | 0.80 | 0.80 | 0.96 | 0.98 | 1.0 |
Average Charging C-rate (C) | 0.81 | 0.78 | 0.70 | 0.46 | 0.57 | 0.81 |
Min Discharging C-rate (C) | −1.0 | −0.80 | −0.80 | −1.0 | −1.0 | −1.0 |
Average Discharging C-rate (C) | −0.81 | −0.78 | −0.64 | −0.73 | −0.74 | −0.78 |
Average SOC (%) | 49.5 | 59.2 | 62.0 | 20.4 | 25.5 | 36.3 |
Final SOH (%) | 73.1 | 75.8 | 79.1 | 85.2 | 81.6 | 76.3 |
Average Cell Temperature (°C) | 21.2 | 19.2 | 18.4 | 11.0 | 11.3 | 19.9 |
Max Cell Temperature (°C) | 30.8 | 26.9 | 27.0 | 36.5 | 39.9 | 30.0 |
Min Cell Temperature (°C) | 18 | 18 | 18 | −4.1 | −4.1 | 18 |
Cal Charging | Cal Discharging | Cyc Charging | Cyc Discharging | |
---|---|---|---|---|
% Derating Origin | 0.52 | 3.98 | 95.5 | 0 |
Cal Charging | Cal Discharging | Cyc Charging | Cyc Discharging | |
---|---|---|---|---|
% Derating Origin | 1.12 | 6.15 | 92.7 | 0 |
Warranty 1 | Warranty 2 | Derated Scenario | Optimal Derated Scenario | Optimal Derated Scenario + Active TM | |
---|---|---|---|---|---|
Average annual revenue (£ million) | 0.70 | 0.50 | 0.43 | 0.50 | 0.72 |
NPV relative to Warranty 1 (%) | - | −7.5 | −3.9 | 0.5 | 2.7 |
IRR relative to Warranty 1 (%) | - | −312 | −0.1 | 8.9 | 16.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajah, I.; Sowe, J.; Schimpe, M.; Barreras, J.V. Degradation-Aware Derating of Lithium-Ion Battery Energy Storage Systems in the UK Power Market. Electronics 2024, 13, 3817. https://doi.org/10.3390/electronics13193817
Rajah I, Sowe J, Schimpe M, Barreras JV. Degradation-Aware Derating of Lithium-Ion Battery Energy Storage Systems in the UK Power Market. Electronics. 2024; 13(19):3817. https://doi.org/10.3390/electronics13193817
Chicago/Turabian StyleRajah, Inessa, Jake Sowe, Michael Schimpe, and Jorge Varela Barreras. 2024. "Degradation-Aware Derating of Lithium-Ion Battery Energy Storage Systems in the UK Power Market" Electronics 13, no. 19: 3817. https://doi.org/10.3390/electronics13193817
APA StyleRajah, I., Sowe, J., Schimpe, M., & Barreras, J. V. (2024). Degradation-Aware Derating of Lithium-Ion Battery Energy Storage Systems in the UK Power Market. Electronics, 13(19), 3817. https://doi.org/10.3390/electronics13193817