A Novel Feedforward Scheme for Enhancing Dynamic Performance of Vector-Controlled Dual Active Bridge Converter with Dual Phase Shift Modulation for Fast Battery Charging Systems
Abstract
:1. Introduction
2. Operational Principle of Three-Level Phase Shift Modulation
3. Battery Charging Profile and Model
4. Basic Principle of Linear Active Disturbance Rejection Control (LADRC)
5. Control System Design
5.1. DPS Modulation
5.2. Extraction of Inductor Current Orthogonal Components
5.3. LADR-Based Inductor Current Control
5.4. LADRC-Based Output Current Loop Control
5.5. Battery Voltage Loop Control Based on LADRC
5.6. Proposed Feedforward for Dynamic Performance Enhancement
6. Numerical Simulations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ehsani, M.; Singh, K.V.; Bansal, H.O.; Mehrjardi, R.T. State of the Art and Trends in Electric and Hybrid Electric Vehicles. Proc. IEEE 2021, 109, 967–984. [Google Scholar] [CrossRef]
- Nkembi, A.A.; Cova, P.; Sacchi, E.; Coraggioso, E.; Delmonte, N. A comprehensive review of power converters for E-mobility. Energies 2023, 16, 1888. [Google Scholar] [CrossRef]
- Khan, S.A.; Islam, M.R.; Guo, Y.; Zhu, J. A New Isolated Multi-Port Converter with Multi-Directional Power Flow Capabilities for Smart Electric Vehicle Charging Stations. IEEE Trans. Appl. Supercond. 2019, 29, 0602504. [Google Scholar] [CrossRef]
- Ghaeminezhad, N.; Monfared, M. Charging control strategies for lithium-ion battery packs: Review and recent developments. IET Power Electron. 2022, 15, 349–367. [Google Scholar] [CrossRef]
- Jeon, S.U.; Park, J.-W.; Kang, B.-K.; Lee, H.-J. Study on Battery Charging Strategy of Electric Vehicles Considering Battery Capacity. IEEE Access 2021, 9, 89757–89767. [Google Scholar] [CrossRef]
- Gücin, T.N.; Biberoğlu, M.; Fincan, B. A Constant-Current Constant-Voltage Charging based control and design approach for the parallel resonant converter. In Proceedings of the 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, Italy, 22–25 November 2015; pp. 414–419. [Google Scholar] [CrossRef]
- Diep, N.T.; Trung, N.K.; Minh, T.T. Control the Constant Current/Voltage Charging Mode in the Wireless Charging System for Electric Vehicle with LCC Compensation Circuit. In Proceedings of the 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, 14–17 October 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Bao, L.; Fan, L.; Miao, Z. Real-Time Simulation of Electric Vehicle Battery Charging Systems. In Proceedings of the 2018 North American Power Symposium (NAPS), Fargo, ND, USA, 9–11 September 2018. [Google Scholar] [CrossRef]
- Safayatullah, M.; Rezaii, R.; Ghosh, S.; Batarseh, I. Control of Electric Vehicle Fast Charger based on Vienna Rectifier and Dual Active Bridge DC-DC Converter. In Proceedings of the 2022 IEEE International Conference on Industrial Technology (ICIT), Shanghai, China, 22–25 August 2022. [Google Scholar] [CrossRef]
- Bao, K.; Li, S.; Zheng, H. Battery charge and discharge control for energy management in EV and utility integration. In Proceedings of the IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012. [Google Scholar] [CrossRef]
- Pavković, D.; Hrgetić, M.; Komljenović, A.; Smetko, V. Battery current and voltage control system design with charging application. In Proceedings of the 2014 IEEE Conference on Control Applications (CCA), Juan Les Antibes, France, 8–10 October 2014; pp. 1133–1138. [Google Scholar] [CrossRef]
- Hebala, O.M.; Aboushady, A.A.; Ahmed, K.H.; Abdelsalam, I.; Burgess, S.J. A New Active Power Controller in Dual Active Bridge DC–DC Converter with a Minimum-Current-Point-Tracking Technique. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 1328–1338. [Google Scholar] [CrossRef]
- Huang, J.; Li, Z.; Shi, L.; Wang, Y.; Zhu, J. Optimized Modulation and Dynamic Control of a Three-Phase Dual Active Bridge Converter with Variable Duty Cycles. IEEE Trans. Power Electron. 2019, 34, 2856–2873. [Google Scholar] [CrossRef]
- Rashwan, A.; Ali, A.I.; Senjyu, T. Current stress minimization for isolated dual active bridge DC–DC converter. Sci. Rep. 2022, 12, 16980. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, H.; Zhu, Y.; Shi, H.; Bu, Q.; Hu, Y.; Yang, Y. Minimum-Current-Stress Scheme of Three-Level Dual-Active-Bridge DC–DC Converters with the Particle Swarm Optimization. IEEE Trans. Transp. Electrif. 2021, 7, 2067–2084. [Google Scholar] [CrossRef]
- Ren, Q.; Xiao, F.; Liu, J.; Chen, P.; Zhu, Z. Efficiency improvement and high-performance control of dual-active-bridge DC-DC converter with triple-phase-shift modulation. CSEE J. Power Energy Syst. 2022, 1–12. [Google Scholar] [CrossRef]
- Nguyen, D.-D.; Yukita, K.; Katou, A.; Yoshida, S. Design Optimization of a Three-Phase Dual-Active-Bridge Converter for Charging Stations. In Proceedings of the 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, 14–17 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, Z.; Tang, X.; Wu, Y.; Xiang, T. Efficiency improvement of dual active bridge converter using simple graphical optimization method. Int. J. Circuit Theory Appl. 2023, 52, 248–262. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Wen, H. PSO-based Current Stress Optimization for Three-Level Dual Active Bridge DC-DC Converters. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 4283–4287. [Google Scholar] [CrossRef]
- Zhang, H.; Tong, X.; Yin, J. Optimal triple-phase-shift controller design of isolated bidirectional DC-DC converter based on ant colony algorithm and BP neural network. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 8802–8807. [Google Scholar] [CrossRef]
- Zhou, L.; Gao, Y.; Ma, H.; Krein, P.T. Wide-Load Range Multiobjective Efficiency Optimization Produces Closed-Form Control Solutions for Dual Active Bridge Converter. IEEE Trans. Power Electron. 2021, 36, 8612–8616. [Google Scholar] [CrossRef]
- Tang, Y.; Hu, W.; Zhang, B.; Cao, D.; Hou, N.; Li, Y.; Chen, Z.; Blaabjerg, F. Deep Reinforcement Learning-Aided Efficiency Optimized Dual Active Bridge Converter for the Distributed Generation System. IEEE Trans. Energy Convers. 2022, 37, 1251–1262. [Google Scholar] [CrossRef]
- Segaran, D.; Holmes, D.G.; McGrath, B.P. Enhanced Load Step Response for a Bidirectional DC–DC Converter. IEEE Trans. Power Electron. 2013, 28, 371–379. [Google Scholar] [CrossRef]
- Song, W.; Hou, N.; Wu, M. Virtual Direct Power Control Scheme of Dual Active Bridge DC-DC Converters for Fast Dynamic Response. IEEE Trans. Power Electron. 2018, 33, 1750–1759. [Google Scholar] [CrossRef]
- An, F.; Song, W.; Yang, K.; Yang, S.; Ma, L. A Simple Power Estimation with Triple Phase-Shift Control for the Output Parallel DAB DC–DC Converters in Power Electronic Traction Transformer for Railway Locomotive Application. IEEE Trans. Transp. Electrif. 2019, 5, 299–310. [Google Scholar] [CrossRef]
- Xu, X.; Bao, G.; Wang, Y.; Li, Q. Design of H∞ Robust Controller with Load-Current Feedforward for Dual-Active-Bridge DC–DC Converters Considering Parameters Uncertainty. IEEE Access 2023, 11, 72332–72342. [Google Scholar] [CrossRef]
- Sun, J.; Sun, Q.; Ma, D.; Wang, P. Improved dynamic response strategy with dual phase-shift control for dual-active-bridge DC–DC converter. IET Power Electron. 2020, 13, 2671–2674. [Google Scholar] [CrossRef]
- An, F.; Song, W.; Yang, K. Direct Power Control of dual-active-Bridge DC–DC converters based on unified phase shift control. J. Eng. 2018, 2019, 2180–2184. [Google Scholar] [CrossRef]
- Zhou, X.; Zhong, W.; Ma, Y.; Guo, K.; Yin, J.; Wei, C. Control Strategy Research of D-STATCOM Using Active Disturbance Rejection Control Based on Total Disturbance Error Compensation. IEEE Access 2021, 9, 50138–50150. [Google Scholar] [CrossRef]
- Bose, S.; Hote, Y.V.; Siddhartha, V. Analysis and Application of Linear ADRC for the Control of DC-DC Converters. In Proceedings of the 2019 Fifth Indian Control Conference (ICC), New Delhi, India, 9–11 January 2019; pp. 436–441. [Google Scholar] [CrossRef]
- Ahmad, S.; Ali, A. Active disturbance rejection control of DC–DC boost converter: A review with modifications for improved performance. IET Power Electron. 2019, 12, 2095–2107. [Google Scholar] [CrossRef]
- Liu, X.; Qiu, L.; Fang, Y.; Wang, K.; Li, Y.; Rodríguez, J. Finite Control-Set Learning Predictive Control for Power Converters. IEEE Trans. Ind. Electron. 2024, 71, 8190–8196. [Google Scholar] [CrossRef]
- Li, X.; Zhan, S.; Yang, Z.; Guo, F.; Liao, H. Improved linear active disturbance rejection control for double active bridge series resonant converter with high voltage gain. Int. J. Circuit Theory Appl. 2024, 1–16. [Google Scholar] [CrossRef]
- Ganesan, P.; Hatua, K. Vector control adopted for single phase Dual Active Bridge. In Proceedings of the 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 14–17 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- P, G.; Hatua, K. Implementation of Vector control for Single Phase Dual Active Bridge to achieve ZVS and ZCS for Switching Loss Reduction. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Rahman, M.I. Control for High Power Dual Active Bridge DC/DC Converter During DC Fault. In Proceedings of the 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Kota Kinabalu, Malaysia, 7–10 October 2018; pp. 627–632. [Google Scholar] [CrossRef]
- Tripathi, A.; Mainali, K.; Patel, D.; Bhattacharya, S.; Hatua, K. Control and performance of a single-phase dual active half bridge converter based on 15kV SiC IGBT and 1200V SiC MOSFET. In Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014, Fort Worth, TX, USA, 16–20 March 2014; pp. 2120–2125. [Google Scholar] [CrossRef]
- Nkembi, A.A.; Cova, P.; Kortabarria, I.; Sacchi, E.; Delmonte, N. An improved modelling and dynamic control of the dual active bridge converter for fast battery charging of electric vehicles. In Proceedings of the 12th International Conference on Power Electronics, Machines and Drives (PEMD 2023), Brussels, Belgium, 23–24 October 2023; pp. 247–254. [Google Scholar] [CrossRef]
- Kim, J.T.; Park, S.; Song, S.-M.; Kim, I.-D. Controller Design of DAB DC-DC Converter for Battery Charger. In Proceedings of the 2021 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju, Republic of Korea, 31 October–3 November 2021; pp. 2050–2054. [Google Scholar] [CrossRef]
- Chaurasiya, S.; Singh, B. A Load Adaptive DPS Control for DAB with Reduced Current Stress for Wide Load and Voltage Range. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 16–19 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Ni, F.-M.; Lee, T.-L. Hybrid modulation of bidirectional three-phase dual-active-bridge DC converters for electric vehicles. Energies 2016, 9, 492. [Google Scholar] [CrossRef]
- Lee, D.-M.; Hyun, S.-W.; Kang, J.-W.; Noh, Y.-S.; Won, C.-Y. A control strategy for bidirectional isolated 3-phase current-fed dual active bridge converter. Electronics 2018, 7, 214. [Google Scholar] [CrossRef]
- Shi, H.; Wen, H.; Chen, J.; Hu, Y.; Jiang, L.; Chen, G. Minimum-Reactive-Power Scheme of Dual-Active-Bridge DC–DC Converter with Three-Level Modulated Phase-Shift Control. IEEE Trans. Ind. Appl. 2017, 53, 5573–5586. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Y.; Ma, M.; Bao, G. Multi-objective optimization phase-shift control strategy for dual-active-bridge isolated bidirectional DC-DC converter. Inf. MIDEM-J. Microelectron. Electron. Compon. Mater. 2021, 51, 169–179. [Google Scholar] [CrossRef]
- Chen, G.-J.; Chung, W.-H. Evaluation of charging methods for lithium-ion batteries. Electronics 2023, 12, 4095. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Xu, Z.; Wu, Y.; Liu, S.; Cai, C. A communication-free WPT system based on transmitter-side hybrid topology switching for battery charging applications. AIP Adv. 2020, 10, 045302. [Google Scholar] [CrossRef]
- Saldaña, G.; Martín, J.I.S.; Zamora, I.; Asensio, F.J.; Oñederra, O. Analysis of the current electric battery models for electric vehicle simulation. Energies 2019, 12, 2750. [Google Scholar] [CrossRef]
- Chang, W.-Y. The state of charge estimating methods for Battery: A review. ISRN Appl. Math. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Dong, H.; Wang, H.; Li, G.; Zhai, H. Linear active disturbance rejection control of new double full-bridge ZVZCS converter for Beam Supply. Electronics 2022, 11, 3062. [Google Scholar] [CrossRef]
- Smadi, A.A.; Khoucha, F.; Amirat, Y.; Benrabah, A.; Benbouzid, M. Active disturbance rejection control of an interleaved high gain DC-DC boost converter for fuel cell applications. Energies 2023, 16, 1019. [Google Scholar] [CrossRef]
- Kang, Z.; Li, Y. Active disturbance rejection control of full-Bridge DC–DC converter for a pulse power supply with controllable charging time. Electronics 2023, 12, 5018. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Lu, J. Research on linear active disturbance rejection control in DC/DC boost converter. Electronics 2019, 8, 1249. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Y.; Luo, A.; Wu, W.; Huai, K.; Zhou, X.; Zhou, L.; Xu, Q.; Guerrero, J.M. Second Ripple Current Suppression by Two Bandpass Filters and Current Sharing Method for Energy Storage Converters in DC Microgrid. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 1031–1044. [Google Scholar] [CrossRef]
- Meng, X.; Jia, Y.; Ren, C.; Han, X.; Wang, P. Modular Circulating Current and Second Harmonic Current Suppression Strategy by Virtual Impedance for DC Solid-State Transformer. IEEE Trans. Power Electron. 2021, 36, 11921–11933. [Google Scholar] [CrossRef]
- Nayak, S.; Gurunath, S.; Rajasekar, N. Advanced single-phase inverse park PLL with tuning of PI controller for improving stability of grid utility using soft computing technique. In Proceedings of the 2016 Online International Conference on Green Engineering and Technologies (IC-GET), Coimbatore, India, 19 November 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, L.; Xing, Y.; Zhang, Z.; Zhao, H.; Ge, H. Generalized Clarke Transformation and Enhanced Dual-Loop Control Scheme for Three-Phase PWM Converters Under the Unbalanced Utility Grid. IEEE Trans. Power Electron. 2022, 37, 8935–8947. [Google Scholar] [CrossRef]
- Rolak, M.; Twardy, M.; Soból, C. Generalized average modeling of a dual active bridge DC-DC converter with triple-phase-shift modulation. Energies 2022, 15, 6092. [Google Scholar] [CrossRef]
- De Din, E.; Siddique, H.A.B.; Cupelli, M.; Monti, A.; De Doncker, R.W. Voltage Control of Parallel-Connected Dual-Active Bridge Converters for Shipboard Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 664–673. [Google Scholar] [CrossRef]
Modes | Conducting Devices | |||
---|---|---|---|---|
0 < β3 < α < 1 | 0 < α < β3 < 1 | |||
FB1 | FB2 | FB1 | FB2 | |
t1–t2 | S3D4 | DaDd | S3D4 | DaDd |
t2–t3 | D1D4 | DaDd | S3D4 | SaDb |
t3–t4 | D1D4 | SaDb | D1D4 | SaDb |
t4–t5 | S1S4 | SaDb | S1S4 | SaDb |
t5–t6 | S1S4 | DbDc | S1S4 | DbDc |
Parameter | Value |
---|---|
Input voltage (Vin) | 756 V |
Battery nominal voltage (Vo) | 900 V |
Switching frequency (Fsw) | 100 kHz |
Rated power (Po) | 250 kW |
Inductance (L) plus transformer leakage inductance | 1.8 µH |
Parasitic resistance of Inductor and transformer | 50 mΩ |
Drain-source on resistance of MOSFET (Rds-on) | 35 mΩ |
Transformer turns ratio | 5:6 |
Output filter capacitor (Cf) | 200 µF |
Filter capacitor ESR | 50 Ω |
Filter Parameter | Value |
---|---|
DC gain (K) | 1 |
Quality Factor | 5 |
Centre frequency (FC) | 100 kHz |
Filter Parameter | Value |
---|---|
DC gain (K) | 1 |
Quality Factor | 1 |
Cut off frequency (FC) | 100 kHz |
Description | Parameter | Value |
---|---|---|
LADRC for inductor current | 5000 rad/s, 20,000 rad/s | |
LADRC for output current | 2000 rad/s, 6000 rad/s | |
LADRC for output voltage | 500 rad/s, 3000 rad/s | |
Feedforward parameters | a, b | 4, 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nkembi, A.A.; Santoro, D.; Ahmad, F.; Kortabarria, I.; Cova, P.; Sacchi, E.; Delmonte, N. A Novel Feedforward Scheme for Enhancing Dynamic Performance of Vector-Controlled Dual Active Bridge Converter with Dual Phase Shift Modulation for Fast Battery Charging Systems. Electronics 2024, 13, 3791. https://doi.org/10.3390/electronics13193791
Nkembi AA, Santoro D, Ahmad F, Kortabarria I, Cova P, Sacchi E, Delmonte N. A Novel Feedforward Scheme for Enhancing Dynamic Performance of Vector-Controlled Dual Active Bridge Converter with Dual Phase Shift Modulation for Fast Battery Charging Systems. Electronics. 2024; 13(19):3791. https://doi.org/10.3390/electronics13193791
Chicago/Turabian StyleNkembi, Armel Asongu, Danilo Santoro, Fawad Ahmad, Iñigo Kortabarria, Paolo Cova, Emilio Sacchi, and Nicola Delmonte. 2024. "A Novel Feedforward Scheme for Enhancing Dynamic Performance of Vector-Controlled Dual Active Bridge Converter with Dual Phase Shift Modulation for Fast Battery Charging Systems" Electronics 13, no. 19: 3791. https://doi.org/10.3390/electronics13193791
APA StyleNkembi, A. A., Santoro, D., Ahmad, F., Kortabarria, I., Cova, P., Sacchi, E., & Delmonte, N. (2024). A Novel Feedforward Scheme for Enhancing Dynamic Performance of Vector-Controlled Dual Active Bridge Converter with Dual Phase Shift Modulation for Fast Battery Charging Systems. Electronics, 13(19), 3791. https://doi.org/10.3390/electronics13193791