A New Photonic Filterless Scheme for the Generation of Frequency 16-Tupling Millimeter Wave Signals Utilizing Cascading Polarization Modulators
Abstract
1. Introduction
2. Principles and Methods
3. Simulation Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erunkulu, O.O.; Zungeru, A.M.; Lebekwe, C.K.; Mosalaosi, M.; Chuma, J.M. 5G mobile communication applications: A survey and comparison of use cases. IEEE Access 2021, 9, 97251–97295. [Google Scholar] [CrossRef]
- Agiwal, M.; Roy, A.; Saxena, N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Hisatake, S.; Fujita, M.; Pham, H.H.N.; Tsuruda, K.; Kuwano, S.; Terada, J. Millimeter-wave and terahertz-wave applications enabled by photonics. IEEE J. Quantum Electron. 2015, 52, 0600912. [Google Scholar] [CrossRef]
- Prabu, R.T.; Benisha, M.; Bai, V.T.; Yokesh, V. Millimeter wave for 5G mobile communication application. In Proceedings of the Second International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Chennai, India, 27–28 February 2016. [Google Scholar]
- Wang, D.; Li, Y.; Yan, X.; Ding, H.; Li, Z. A simple filter-less QPSK modulated vector millimeter-wave signal generation with frequency quadrupling only enabled by a DP-PolM. Opt. Quantum Electron. 2023, 55, 1244. [Google Scholar] [CrossRef]
- Zhao, L.; Xiong, L.; Liao, M.; Xia, J.; Pang, Y.; Shi, X. W-band 8QAM vector millimeter-wave signal generation based on tripling of frequency without phase pre-coding. IEEE Access 2019, 7, 156978–156983. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, B.; Ji, S. Generation of multiple-frequency optical millimeter-wave signal with optical carrier suppression and no optical filter. IEEE Photonics J. 2017, 9, 1–7. [Google Scholar] [CrossRef]
- Ray, S.; Médard, M.; Zheng, L. Fiber aided wireless network architecture. IEEE J. Sel. Areas Commun. 2011, 29, 1284–1294. [Google Scholar] [CrossRef]
- Zhang, K.; Li, S.; Xie, Z.; Zheng, Z. An all-optical Ka-band microwave long-distance dissemination system based on an optoelectronic oscillator. IEEE Photonics J. 2022, 14, 1–5. [Google Scholar]
- Zhang, K.; Wang, W.; Liu, S.; Pan, X.; Du, J.; Lou, Y.; Yu, S.; Lv, S.; Treps, N.; Fabre, C.; et al. Reconfigurable hexapartite entanglement by spatially multiplexed four-wave mixing processes. Phys. Rev. Lett. 2020, 124, 090501. [Google Scholar] [CrossRef]
- Delmade, A.; Browning, C.; Verolet, T.; Poette, J.; Farhang, A.; Elwan, H.H.; Koilpillai, R.D.; Aubin, G.; Lelarge, F.; Ramdane, A.; et al. Optical heterodyne analog radio-over-fiber link for millimeter-wave wireless systems. J. Light. Technol. 2020, 39, 465–474. [Google Scholar] [CrossRef]
- Ma, J.; Wen, A.; Zhang, W.; Liang, M.; Tu, Z. Carrier-frequency-doubled photonic microwave vector signal generation based on PDM-MZM. Opt. Commun. 2019, 450, 347–351. [Google Scholar] [CrossRef]
- Wang, D.F.; Hui, S.H.; Ding, H.Y.; Li, Z.C.; Li, Z.Z.; Sun, D.Z. A new and simple frequency quadrupling millimeter-wave signal generation enabled by a single Mach-Zehnder modulator without optical filter. J. Nanoelectron. Optoelectron. 2021, 16, 1886–1891. [Google Scholar] [CrossRef]
- Yan, Y.; Ma, J. Filterless Frequency Octupling Microwave Photonic Phase Shifter Based on Cascaded Mach–Zehnder Modulators. Fiber Integr. Opt. 2024, 43, 43–54. [Google Scholar] [CrossRef]
- Abouelez, A.E. Optical millimeter-wave generation via frequency octupling circuit based on two parallel dual-parallel polarization modulators. Opt. Quantum Electron. 2020, 52, 439. [Google Scholar] [CrossRef]
- Abouelez, A.E. Photonic generation of millimeter-wave signal through frequency 12-tupling using two cascaded dual-parallel polarization modulators. Opt. Quantum Electron. 2020, 52, 166. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Jiang, C.; Huang, D. A filterless optical millimeter-wave generation based on frequency 16-tupling. In Proceedings of the Asia Communications and Photonics Conference, Beijing, China, 12–15 November 2013. [Google Scholar]
- Zhu, Z.; Zhao, S.; Chu, X.; Dong, Y. Optical generation of millimeter-wave signals via frequency 16-tupling without an optical filter. Opt. Commun. 2015, 354, 40–47. [Google Scholar] [CrossRef]
- Wu, Z.; Cao, C.; Zeng, X.; Feng, Z.; Shen, J.; Yan, X.; Wang, B.; Su, X. Filterless radio-over-fiber system based on polarization multiplexing to generate an 80 GHz millimeter wave. Appl. Opt. 2020, 59, 7455–7461. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, M.; Prabakaran, R. Optical millimeter wave signal generation with frequency 16-tupling using cascaded mzms and no optical filtering for radio over fiber system. J. Eur. Opt. Soc. Rapid Publ. 2018, 14, 13. [Google Scholar] [CrossRef]
- Wang, D.; Tang, X.; Xi, L.; Zhang, X.; Fan, Y. A filterless scheme of generating frequency 16-tupling millimeter-wave based on only two MZMs. Opt. Laser Technol. 2019, 116, 7–12. [Google Scholar] [CrossRef]
- Dar, A.B.; Ahmad, F. Filterless 16-tupling photonic millimeter-wave generation with Mach–Zehnder modulators using remodulation. Appl. Opt. 2020, 59, 6018–6023. [Google Scholar]
- Liu, S.; Ma, J. Filterless frequency 16-tupling millimeter-wave signal generation with cascaded Mach–Zehnder modulators. Opt. Eng. 2021, 60, 15101. [Google Scholar] [CrossRef]
- Li, X.; Zhao, S.; Wang, G.; Liu, J. Photonic Generation of Frequency 16-Tupling Millimeter-Wave Signal without Optical Filter. J. Appl. Math. Phys. 2011, 9, 2995–3005. [Google Scholar] [CrossRef]
- Wang, C.; Song, K.; Li, M.; Yi, Y.; Zhou, M.; Wu, J. Generation of frequency 16-tupling millimeter wave without filtering based on cascaded Mach–Zehnder modulator. Microw. Opt. Technol. Lett. 2024, 66, e33904. [Google Scholar] [CrossRef]
Authors (Year) | Modulator | OSSR (dB) | RFSSR (dB) |
---|---|---|---|
Xiaogang Chen, et al. (2013) [17] | 2 cascaded DP-MZMs | 49 | 32 |
Zihang Zhu, et al. (2015) [18] | 2 cascaded DP-MZMs | 21.5 | 38 |
M. Baskaran, et al. (2018) [20] | 4 cascaded MZMs | 54 | 42 |
Dongfei Wang, et al. (2019) [21] | 2 parallel MZMs | 31.35 | 24.11 |
Zengyan Wu, et al. (2020) [19] | 2 parallel MZMs | 23.48 | 26.38 |
Aasif Bashir Dar, et al. (2020) [22] | 2 parallel DP-MZMs | 28 | 27 |
Shuang Liu, et al. (2021) [23] | 2 cascaded MZMs | 29.85 | 23.9 |
Xuan Li, et al. (2021) [24] | 2 cascaded DP-MZMs | 26 | 40 |
Chong Wang, et al. (2024) [25] | 2 cascaded MZMs | 29.92 | 24.89 |
Parameters | Values |
---|---|
The center frequency of CW laser | 193.1 THz |
Linewidth of CW laser | 10 MHz |
Power of CW laser | 20 dBm |
Frequency of RF | 10 GHz |
Phase shift of EPS1 | π/4 |
Phase shift of EPS2 | π/2 |
Phase shift of EPS3 | 3π/4 |
Angle of PC1, PC2, PC3 and PC4 | π/4 |
Angle of Pol1, Pol2, Pol3 and Pol4 | π/4 |
Responsivity of PD | 0.8 A/W |
Dark current of PD | 10 nA |
Authors (Year) | OSSR (dB) | RFSSR (dB) |
---|---|---|
Xiaogang Chen, et al. (2013) [17] | 49 | 32 |
Zihang Zhu, et al. (2015) [18] | 21.5 | 38 |
M. Baskaran, et al. (2018) [20] | 54 | 42 |
Dongfei Wang, et al. (2019) [21] | 31.35 | 24.11 |
Zengyan Wu, et al. (2020) [19] | 23.48 | 26.38 |
Aasif Bashir Dar, et al. (2020) [22] | 28 | 27 |
Shuang Liu, et al. (2021) [23] | 29.85 | 23.9 |
Xuan Li, et al. (2021) [24] | 26 | 40 |
Chong Wang, et al. (2024) [25] | 29.92 | 24.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Yan, X.; Wang, D.; Wang, X.; Yang, X. A New Photonic Filterless Scheme for the Generation of Frequency 16-Tupling Millimeter Wave Signals Utilizing Cascading Polarization Modulators. Electronics 2024, 13, 2725. https://doi.org/10.3390/electronics13142725
Yang Z, Yan X, Wang D, Wang X, Yang X. A New Photonic Filterless Scheme for the Generation of Frequency 16-Tupling Millimeter Wave Signals Utilizing Cascading Polarization Modulators. Electronics. 2024; 13(14):2725. https://doi.org/10.3390/electronics13142725
Chicago/Turabian StyleYang, Zufang, Xueyao Yan, Dongfei Wang, Xiangqing Wang, and Xiaokun Yang. 2024. "A New Photonic Filterless Scheme for the Generation of Frequency 16-Tupling Millimeter Wave Signals Utilizing Cascading Polarization Modulators" Electronics 13, no. 14: 2725. https://doi.org/10.3390/electronics13142725
APA StyleYang, Z., Yan, X., Wang, D., Wang, X., & Yang, X. (2024). A New Photonic Filterless Scheme for the Generation of Frequency 16-Tupling Millimeter Wave Signals Utilizing Cascading Polarization Modulators. Electronics, 13(14), 2725. https://doi.org/10.3390/electronics13142725