Stable Operation Domain Analysis of Back-to-Back Converter Based Flexible Multi-State Switches Considering PLL Dynamics
Abstract
1. Introduction
2. Equivalent Modeling and Control Strategy of Flexible Interconnected Distribution Network
2.1. System Modeling
2.2. Control Strategy Analysis of Flexible Multi-State Switch
3. Derivation of Transmission Power Expression of Flexible Multi-State Switch
3.1. The Transmission Power Expression of VSC Controlled by Current under dq Transformation
3.2. Derivation of Transmission Power Expression of VSC on Both Sides of BTBC-FMSS
- (1)
- VSC1 side,
- (2)
- VSC2 side,
4. Transmission Power Limit and Stable Operation Domain Analysis of BTBC-FMSS
4.1. Analysis of Transmission Power Characteristics on Both Sides of BTBC-FMSS
4.2. Stable Operation Domain Analysis of BTBC-FMSS
4.3. Transmission Active Power Limits Analysis and Enhancement Measures of BTBC-FMSS
Algorithm 1: BTBC-FMSS transmission power stability limit algorithm. |
1: The Thevenin equivalent of the BTBC-FMSS based flexible interconnected DN on both sides is carried out. |
2: Get the equivalent impedance on both sides: |
3: Zs1 = |Zs1| ∠ θ1 |
4: Zs2 = |Zs2| ∠ θ2 |
5: Calculate, derive the maximum input/output current amplitude I1max and I2max. |
6: Make drawings, derive the stable operation domain SD1 and SD2. |
7: Take the intersection, SD = SD1∩SD2 (Figure 6) |
8: Derive Pmax+ and Pmax− (the maximum upper limit of active power transmission). |
end |
4.4. The Engineering Application Prospect of the Stable Operation Domain of BTBC-FMSS and the Specific Suggestions for the Actual Distribution Network
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fuad, K.S.; Hafezi, H.; Kauhaniemi, K.; Laaksonen, H. Soft Open Point in Distribution Networks. IEEE Access 2020, 8, 210550–210565. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Y.; Peng, B.; Lu, Y.; Qiu, P.; Xu, F.; Wang, C. Multi-objective operation optimization of active distribution network based on three-terminal flexible multi-state switch. J. Renew. Sustain. Energy 2019, 11, 2. [Google Scholar] [CrossRef]
- Li, P.; Ji, J.; Ji, H.; Song, G.; Wang, C.; Wu, J. Self-healing oriented supply restoration method based on the coordination of multiple SOPs in active distribution networks. Energy 2020, 195, 116968. [Google Scholar] [CrossRef]
- Zhou, J.Z.; Ding, H.; Fan, S.; Zhang, Y.; Gole, A.M. Impact of Short-Circuit Ratio and Phase-Locked-Loop Parameters on the Small-Signal Behavior of a VSC-HVDC Converter. IEEE Trans. Power Deliv. 2014, 29, 2287–2296. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, N.; Chung, C.Y.; Wang, Q. Coordinated Planning of Converter-Based DG Units and Soft Open Points Incorporating Active Management in Unbalanced Distribution Networks. IEEE Trans. Sustain. Energy 2020, 11, 2015–2027. [Google Scholar] [CrossRef]
- Aithal, A.; Li, G.; Wu, J.; Yu, J. Performance of an electrical distribution network with Soft Open Point during a grid side AC fault. Appl. Energy 2017, 227, 262–272. [Google Scholar] [CrossRef]
- Tian, Y.; Peng, F.; Wang, Y.; Chen, Z. Coordinative impedance damping control for back-to-back converter in solar power integration system. IET Renew. Power Gener. 2019, 13, 1484–1492. [Google Scholar] [CrossRef]
- Li, P.; Ji, H.; Yu, H.; Zhao, J.; Wang, C.; Song, G.; Wu, J. Combined decentralized and local voltage control strategy of soft open points in active distribution networks. Appl. Energy 2019, 241, 613–624. [Google Scholar] [CrossRef]
- Zhou, J.Z.; Gole, A.M. VSC transmission limitations imposed by AC system strength and AC impedance characteristics. In Proceedings of the 10th IET International Conference on AC and DC Power Transmission (ACDC 2012), Birmingham, UK, 1–5 December 2012; pp. 1–6. [Google Scholar]
- Yuan, H.; Xin, H.; Wu, D.; Li, Z.; Qin, X.; Zhou, Y.; Huang, L. Assessing Maximal Capacity of Grid-Following Converters with Grid Strength Constraints. IEEE Trans. Sustain. Energy 2022, 13, 2119–2132. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, D. Effect of Control-Loops Interactions on Power Stability Limits of VSC Integrated to AC System. IEEE Trans. Power Deliv. 2017, 33, 301–310. [Google Scholar] [CrossRef]
- Huang, S.; Wu, S.; Zhang, J.; Sun, B.; Han, T. Research on and application of fault disposal in flexible interconnection distribution network. In Proceedings of the 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, 25–27 August 2020; pp. 639–642. [Google Scholar]
- He, X.; Geng, H.; Xi, J.; Guerrero, J.M. Resynchronization Analysis and Improvement of Grid-Connected VSCs during Grid Faults. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 9, 438–450. [Google Scholar] [CrossRef]
- He, X.; Tsinghua University; Geng, H.; Ma, S. Transient Stability Analysis of Grid-Tied Converters Considering PLL’s Nonlinearity. CPSS Trans. Power Electron. Appl. 2019, 4, 40–49. [Google Scholar] [CrossRef]
- Hu, Q.; Fu, L.; Ma, F.; Ji, F. Large Signal Synchronizing Instability of PLL-Based VSC Connected to Weak AC Grid. IEEE Trans. Power Syst. 2019, 34, 3220–3229. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Q.; Dai, N.; Huang, Y. An improved control strategy with adaptive dynamic reference control for DC voltage stabilization in soft open point. In Proceedings of the 2023 IEEE 2nd International Power Electronics and Application Symposium (PEAS), Guangzhou, China, 10–13 November 2023; pp. 2203–2208. [Google Scholar]
- Song, J.; Zhang, Y.; Gao, Z.; Cao, C.; Wang, Z.; Xu, F. Research on Topology and control technology of soft multi-state open point with fault isolation capability. In Proceedings of the 2018 China International Conference on Electricity Distribution (CICED), Tianjin, China, 17–19 September 2018; pp. 1467–1473. [Google Scholar]
- Göksu, Ö.; Teodorescu, R.; Bak, C.L.; Iov, F.; Kjær, P.C. Instability of Wind Turbine Converters During Current Injection to Low Voltage Grid Faults and PLL Frequency Based Stability Solution. IEEE Trans. Power Syst. 2014, 29, 1683–1691. [Google Scholar] [CrossRef]
- Naderi, M.; Khayat, Y.; Shafiee, Q.; Dragicevic, T.; Bevrani, H.; Blaabjerg, F. Interconnected Autonomous AC Microgrids via Back-to-Back Converters—Part I: Small-Signal Modeling. IEEE Trans. Power Electron. 2019, 35, 4728–4740. [Google Scholar] [CrossRef]
- Naderi, M.; Khayat, Y.; Shafiee, Q.; Dragicevic, T.; Bevrani, H.; Blaabjerg, F. Interconnected Autonomous ac Microgrids via Back-to-Back Converters-Part II: Stability Analysis. IEEE Trans. Power Electron. 2020, 35, 11801–11812. [Google Scholar] [CrossRef]
Distribution Network | ||
---|---|---|
Structural Parameter | Numerical Value | |
DN1 | DN2 | |
Bilateral voltage of distribution network Ug/V | 380 | 380 |
Equivalent impedance of bilateral power grid of distribution network |Zg|/Ω | 5 | 5 |
BTBC-FMSS device | ||
VSC1 and VSC2 structure and control parameters | numerical value | |
RL filter Rfc/Lfc | 0.1 Ω/0.8 mH | |
dc-link capacitor Cdc | 1000 μF | |
PI parameters of inner current loop Kp_CC/Ki_CC | 20/200 | |
DC voltage ring PI parameters Kp_DVC/Ki_DVC | 2/20 | |
PLL parameters Kp_PLL/Ki_PLL | 0.4/2 |
Distribution Network | ||
---|---|---|
Structural Parameter | Numerical Value | |
DN1 | DN2 | |
Bilateral voltage of distribution network Ug/V | 380 | 380 |
Equivalent impedance of bilateral power grid of distribution network |Zg|/Ω | 4.55 | 9.85 |
BTBC-FMSS device | ||
VSC1 and VSC2 structure and control parameters | numerical value | |
RL filter Rfc/Lfc | 0.15 Ω/0.85 mH | |
dc-link capacitor Cdc | 1000 μF | |
PI parameters of inner current loop Kp_CC/Ki_CC | 25/250 | |
DC voltage ring PI parameters Kp_DVC/Ki_DVC | 3/30 | |
PLL parameters Kp_PLL/Ki_PLL | 0.4/2 |
Distribution Network 1 Side | Distribution Network 2 Side | ||
---|---|---|---|
Pre-equivalent | |||
grid side voltage U1/V | 380 | grid side voltage U2/V | 380 |
line impedance Ri + jXi/Ω (i = 1, 2, 3) | 0.35 + j2 | line impedance Ri + jXi/Ω (i = 4, 5) | 1.058 + j6 |
0.35 + j2 | 0.705 + j4 | ||
0.18 + j1 | / | ||
load RLi + jXLi/Ω (i = 1, 2) | 15 + j45 | load RLi + jXLi/Ω (i = 3) | 50 + j100 |
10 + j30 | |||
Post-equivalent | |||
equivalent voltage Ug1/V | 324∠−1.27° | equivalent voltage Ug2/V | 361∠−0.85° |
equivalent impedance Zs1/Ω | 4.55∠79.15° | equivalent impedance Zs2/Ω | 9.85∠79.51° |
Short-circuit capacity | |||
23.072 kVA | 13.231 kVA |
Distribution Network | ||
---|---|---|
Structural Parameter | Numerical Value | |
DN1 | DN2 | |
Bilateral voltage of distribution network Ug/V | 380 | 380 |
Equivalent impedance of bilateral power grid of distribution network. |Zg|/Ω | 5.06 | 8.68 |
BTBC-FMSS device | ||
VSC1 and VSC2 structure and control parameters | numerical value | |
RL filter Rfc/Lfc | 0.1 Ω/0.8 mH | |
dc-link capacitor Cdc | 1000 μF | |
PI parameters of inner current loop Kp_CC/Ki_CC | 20/200 | |
DC voltage ring PI parameters Kp_DVC/Ki_DVC | 2/20 | |
PLL parameters Kp_PLL/Ki_PLL | 0.4/2 |
Distribution Network 1 Side | Distribution Network 2 Side | ||
---|---|---|---|
Pre-equivalent | |||
grid side voltage U1/V | 380 | grid side voltage U2/V | 380 |
line impedance Ri + jXi/Ω (i = 1, 2, 3) | 0.35 + j2 | line impedance Ri + jXi/Ω (i = 4, 5) | 1.058 + j6 |
0.35 + j2 | 0.705+ j4 | ||
0.26 + j1.5 | / | ||
load RLi + jXLi/Ω (i = 1, 2) | 15 + j45 | load RLi + jXLi/Ω (i = 3) | 240 + j480 |
10 + j30 | |||
Post-equivalent | |||
equivalent voltage Ug1/V | 324∠−1.27° | equivalent voltage Ug2/V | 288∠−4.06° |
equivalent impedance Zs1/Ω | 5.06∠79.24° | equivalent impedance Zs2/Ω | 8.68∠77.84° |
Short-circuit capacity | |||
31.119 kVA | 14.333 kVA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ding, J.; Xu, B.; Meng, X.; Qi, Z. Stable Operation Domain Analysis of Back-to-Back Converter Based Flexible Multi-State Switches Considering PLL Dynamics. Electronics 2024, 13, 2592. https://doi.org/10.3390/electronics13132592
Wang X, Ding J, Xu B, Meng X, Qi Z. Stable Operation Domain Analysis of Back-to-Back Converter Based Flexible Multi-State Switches Considering PLL Dynamics. Electronics. 2024; 13(13):2592. https://doi.org/10.3390/electronics13132592
Chicago/Turabian StyleWang, Xunting, Jinjin Ding, Bin Xu, Xiaoxiao Meng, and Zhengyi Qi. 2024. "Stable Operation Domain Analysis of Back-to-Back Converter Based Flexible Multi-State Switches Considering PLL Dynamics" Electronics 13, no. 13: 2592. https://doi.org/10.3390/electronics13132592
APA StyleWang, X., Ding, J., Xu, B., Meng, X., & Qi, Z. (2024). Stable Operation Domain Analysis of Back-to-Back Converter Based Flexible Multi-State Switches Considering PLL Dynamics. Electronics, 13(13), 2592. https://doi.org/10.3390/electronics13132592