Edge Computing-Enabled Secure Forecasting Nationwide Industry PM2.5 with LLM in the Heterogeneous Network
Abstract
:1. Introduction
- To mitigate the security risks of centralized training due to data leakage during transmission, we present an edge-based distributed learning framework, STLLM-ECS, to securely forecast nationwide industry in ECS. In detail, we develop a novel method named NodeSort to partition the nationwide sensor network graph into several subgraphs. The data and training tasks of each subgraph are then uploaded to an individual ECS rather than to a central cloud. This avoids the security risks around data leakage when transmitting data from sensors to the central cloud. In addition, we design an edge training strategy between neighbor subgraphs to speed up training and achieve the “training-during-inference” pattern. Meanwhile, the strategy facilitates sharing of similar industry changes among neighboring subgraphs, thereby improving prediction accuracy.
- An LLM-based model called STLLM is presented. A spatiotemporal module (STM) is developed to capture spatiotemporal correlations, while GPT-2 [7] is adopted to produce output sequences. This is a novel hybrid framework that introduces a spatiotemporal feature extraction module into the LLM for industry prediction. It effectively provides the LLM with the ability to model spatiotemporal features. In addition, considering the weak computing power of ECS, a pruning strategy is developed to further lighten model deployment on the ECS.
- We conduct extensive experiments on a nationwide industry dataset comprising data from over 1000 sensors collected from across China’s industrial regions. Our results indicate that the proposed STLLM-ECS is superior to all compared baselines.
2. Related Work
2.1. Edge Computing
2.2. LLMs for Time Series Analysis
2.3. Air Pollution Forecasting
3. Preliminaries
4. STLLM-ECS Design
4.1. System Overview
4.2. Graph Partitioning Design
4.3. STLLM Design
4.4. Edge Training Strategy
5. Experiments
5.1. Experimental Settings
5.1.1. Dataset
5.1.2. Baselines
- Spatio-Temporal Graph Convolutional Networks (STGCNs)-based models: Selected STGCNs (e.g., Diffusion Convolutional Recurrent Neural Network (DCRNN) [29] and Spatio-Temporal Graph Convolutional Network (STGCN) [30]) were used as baselines. DCRNN and STGCN generalize well to nationwide industrial prediction.
5.1.3. Evaluation Metrics
5.1.4. Parameter Settings
5.2. Experimental Results
5.2.1. Performance Comparisons
5.2.2. Case Study
5.2.3. Effect of Hyperparameters
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Wang, K.; Lin, Y.; Xu, W. LightChain: A lightweight blockchain system for industrial internet of things. IEEE Trans. Ind. Inform. 2019, 15, 3571–3581. [Google Scholar] [CrossRef]
- Liu, Y.; Du, H.; Niyato, D.; Kang, J.; Xiong, Z.; Jamalipour, A.; Shen, X. ProSecutor: Protecting Mobile AIGC Services on Two-Layer Blockchain via Reputation and Contract Theoretic Approaches. IEEE Trans. Mob. Comput. 2024. [Google Scholar] [CrossRef]
- Dong, Y.; Hu, Z.; Wang, K.; Sun, Y.; Tang, J. Heterogeneous network representation learning. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan, 11–17 July 2020; Volume 20, pp. 4861–4867. [Google Scholar]
- Zhang, T.; Xu, C.; Lian, Y.; Tian, H.; Kang, J.; Kuang, X.; Niyato, D. When Moving Target Defense Meets Attack Prediction in Digital Twins: A Convolutional and Hierarchical Reinforcement Learning Approach. IEEE J. Sel. Areas Commun. 2023, 41, 3293–3305. [Google Scholar] [CrossRef]
- Hu, K.; Rahman, A.; Bhrugubanda, H.; Sivaraman, V. HazeEst: Machine learning based metropolitan air pollution estimation from fixed and mobile sensors. IEEE Sens. J. 2017, 17, 3517–3525. [Google Scholar] [CrossRef]
- Han, Q.; Liu, P.; Zhang, H.; Cai, Z. A wireless sensor network for monitoring environmental quality in the manufacturing industry. IEEE Access 2019, 7, 78108–78119. [Google Scholar] [CrossRef]
- Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI Blog 2019, 1, 9. [Google Scholar]
- Otter, D.W.; Medina, J.R.; Kalita, J.K. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 604–624. [Google Scholar] [CrossRef]
- Wang, J.; Du, H.; Tian, Z.; Niyato, D.; Kang, J.; Shen, X. Semantic-aware sensing information transmission for metaverse: A contest theoretic approach. IEEE Trans. Wirel. Commun. 2023, 22, 5214–5228. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, S.; Wang, X.; Sun, B.; Liu, H. A PM2.5 concentration prediction model based on multi-task deep learning for intensive air quality monitoring stations. J. Clean. Prod. 2020, 275, 122722. [Google Scholar] [CrossRef]
- Hu, Y.; Cao, N.; Guo, W.; Chen, M.; Rong, Y.; Lu, H. FedDeep: A Federated Deep Learning Network for Edge Assisted Multi-Urban PM2.5 Forecasting. Appl. Sci. 2024, 14, 1979. [Google Scholar] [CrossRef]
- Shi, W.; Dustdar, S. The promise of edge computing. Computer 2016, 49, 78–81. [Google Scholar] [CrossRef]
- Toczé, K.; Nadjm-Tehrani, S. A taxonomy for management and optimization of multiple resources in edge computing. Wirel. Commun. Mob. Comput. 2018, 2018, 7476201. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, C.; Zou, P.; Tian, H.; Kuang, X.; Yang, S.; Zhong, L.; Niyato, D. How to mitigate DDoS intelligently in SD-IoV: A moving target defense approach. IEEE Trans. Ind. Inform. 2022, 19, 1097–1106. [Google Scholar] [CrossRef]
- Wang, J.; Du, H.; Niyato, D.; Kang, J.; Xiong, Z.; Rajan, D.; Mao, S.; Shen, X. A unified framework for guiding generative ai with wireless perception in resource constrained mobile edge networks. IEEE Trans. Mob. Comput. 2024. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, C.; Shen, J.; Kuang, X.; Grieco, L.A. How to Disturb Network Reconnaissance: A Moving Target Defense Approach Based on Deep Reinforcement Learning. IEEE Trans. Inf. Forensics Secur. 2023, 18, 5735–5748. [Google Scholar] [CrossRef]
- Su, X.; Liu, X.; Motlagh, N.H.; Cao, J.; Su, P.; Pellikka, P.; Liu, Y.; Petäjä, T.; Kulmala, M.; Hui, P.; et al. Intelligent and scalable air quality monitoring with 5G edge. IEEE Internet Comput. 2021, 25, 35–44. [Google Scholar] [CrossRef]
- Wardana, I.N.K.; Gardner, J.W.; Fahmy, S.A. Collaborative Learning at the Edge for Air Pollution Prediction. IEEE Trans. Instrum. Meas. 2023, 73, 2503612. [Google Scholar] [CrossRef]
- Wang, J.; Du, H.; Niyato, D.; Xiong, Z.; Kang, J.; Mao, S.; Shen, X.S. Guiding AI-generated digital content with wireless perception. IEEE Wirel. Commun. 2024. [Google Scholar] [CrossRef]
- Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. 2018. Available online: https://www.mikecaptain.com/resources/pdf/GPT-1.pdf (accessed on 25 June 2024).
- Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; Anadkat, S.; et al. Gpt-4 technical report. arXiv 2023, arXiv:2303.08774. [Google Scholar]
- Yu, X.; Chen, Z.; Ling, Y.; Dong, S.; Liu, Z.; Lu, Y. Temporal Data Meets LLM–Explainable Financial Time Series Forecasting. arXiv 2023, arXiv:2306.11025. [Google Scholar]
- Chang, C.; Peng, W.C.; Chen, T.F. Llm4ts: Two-stage fine-tuning for time-series forecasting with pre-trained llms. arXiv 2023, arXiv:2308.08469. [Google Scholar]
- Zhou, T.; Niu, P.; Sun, L.; Jin, R. One fits all: Power general time series analysis by pretrained lm. Adv. Neural Inf. Process. Syst. 2023, 36, 43322–43355. [Google Scholar]
- Arystanbekova, N.K. Application of Gaussian plume models for air pollution simulation at instantaneous emissions. Math. Comput. Simul. 2004, 67, 451–458. [Google Scholar] [CrossRef]
- Daly, A.; Zannetti, P. Air pollution modeling—An overview. Ambient. Air Pollut. 2007, 15–28. Available online: https://www.researchgate.net/profile/Arideep-Mukherjee/post/What-are-the-models-for-modelling-air-pollution/attachment/5bc95d70cfe4a76455fbd37d/AS%3A683302050607104%401539923312818/download/Modeling.pdf (accessed on 25 June 2024).
- Zheng, Y.; Yi, X.; Li, M.; Li, R.; Shan, Z.; Chang, E.; Li, T. Forecasting fine-grained air quality based on big data. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August 2015; pp. 2267–2276. [Google Scholar]
- Yi, X.; Zhang, J.; Wang, Z.; Li, T.; Zheng, Y. Deep distributed fusion network for air quality prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 965–973. [Google Scholar]
- Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv 2017, arXiv:1707.01926. [Google Scholar]
- Yu, B.; Yin, H.; Zhu, Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv 2017, arXiv:1709.04875. [Google Scholar]
- Brin, S. The PageRank citation ranking: Bringing order to the web. Proc. ASIS 1998, 98, 161–172. [Google Scholar]
- Brandes, U. A faster algorithm for betweenness centrality. J. Math. Sociol. 2001, 25, 163–177. [Google Scholar] [CrossRef]
- Nie, Y.; Nguyen, N.H.; Sinthong, P.; Kalagnanam, J. A time series is worth 64 words: Long-term forecasting with transformers. arXiv 2022, arXiv:2211.14730. [Google Scholar]
- Park, C.; Lee, C.; Bahng, H.; Tae, Y.; Jin, S.; Kim, K.; Ko, S.; Choo, J. ST-GRAT: A novel spatio-temporal graph attention networks for accurately forecasting dynamically changing road speed. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Virtual Event, 19–23 October 2020; pp. 1215–1224. [Google Scholar]
- Bhatti, U.A.; Yan, Y.; Zhou, M.; Ali, S.; Hussain, A.; Qingsong, H.; Yu, Z.; Yuan, L. Time series analysis and forecasting of air pollution particulate matter (PM2.5): An SARIMA and factor analysis approach. IEEE Access 2021, 9, 41019–41031. [Google Scholar] [CrossRef]
- Zhang, B.; Rong, Y.; Yong, R.; Qin, D.; Li, M.; Zou, G.; Pan, J. Deep learning for air pollutant concentration prediction: A review. Atmos. Environ. 2022, 290, 119347. [Google Scholar] [CrossRef]
- Zheng, C.; Fan, X.; Wang, C.; Qi, J. Gman: A graph multi-attention network for traffic prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, Hilton, NY, USA, 7–12 February 2020; Volume 34, pp. 1234–1241. [Google Scholar]
- Yu, M.; Masrur, A.; Blaszczak-Boxe, C. Predicting hourly PM2.5 concentrations in wildfire-prone areas using a SpatioTemporal Transformer model. Sci. Total Environ. 2023, 860, 160446. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Xia, Y.; Ke, S.; Wang, Y.; Wen, Q.; Zhang, J.; Zheng, Y.; Zimmermann, R. Airformer: Predicting nationwide air quality in china with transformers. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 14329–14337. [Google Scholar]
Model | GPUM | 1–12 h | 13–24 h | 25–36 h | Average | TT | AT | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | ||||
HA | - | 47.28 | 92.65 | 47.28 | 92.65 | 47.28 | 92.65 | 47.28 | 92.65 | 1.95 h | - |
SVR | - | 31.04 | 64.75 | 34.57 | 70.41 | 37.83 | 75.24 | 34.48 | 70.07 | 2.04 h | - |
DCRNN | 5.03 G | 15.63 | 29.59 | 16.72 | 31.15 | 17.48 | 34.34 | 16.52 | 31.36 | 4.84 h | - |
STGCN | 4.78 G | 15.37 | 30.28 | 15.98 | 31.24 | 16.82 | 32.36 | 16.06 | 31.29 | 3.89 h | - |
ST-GRAT | 5.33 G | 16.36 | 31.27 | 18.01 | 36.43 | 19.86 | 40.24 | 18.08 | 35.98 | 5.61 h | - |
GMAN | 6.73 G | 16.84 | 33.65 | 17.47 | 36.92 | 19.24 | 39.85 | 17.85 | 36.81 | 6.94 h | - |
ST-Transformer | 5.17 G | 16.24 | 30.89 | 17.82 | 35.89 | 19.01 | 39.14 | 17.69 | 35.31 | 5.12 h | - |
Airformer | 4.21 G | 15.58 | 29.37 | 16.96 | 34.27 | 18.41 | 38.12 | 16.98 | 33.92 | 3.98 h | - |
LLM4TS | 1.72 G | 14.23 | 27.84 | 15.99 | 30.17 | 17.72 | 33.46 | 15.98 | 30.49 | 2.35 h | - |
FPT | 1.58 G | 14.12 | 28.54 | 16.39 | 33.95 | 16.03 | 32.67 | 15.51 | 31.72 | 2.14 h | - |
STLLM-ECS | 2.24 G | 13.25 | 25.32 | 15.37 | 28.89 | 16.93 | 32.17 | 15.18 | 28.79 | 2.67 h | 0.27 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, C.; Mao, Y.; He, Z.; Chen, M.; He, X.; Rong, Y. Edge Computing-Enabled Secure Forecasting Nationwide Industry PM2.5 with LLM in the Heterogeneous Network. Electronics 2024, 13, 2581. https://doi.org/10.3390/electronics13132581
Yin C, Mao Y, He Z, Chen M, He X, Rong Y. Edge Computing-Enabled Secure Forecasting Nationwide Industry PM2.5 with LLM in the Heterogeneous Network. Electronics. 2024; 13(13):2581. https://doi.org/10.3390/electronics13132581
Chicago/Turabian StyleYin, Changkui, Yingchi Mao, Zhenyuan He, Meng Chen, Xiaoming He, and Yi Rong. 2024. "Edge Computing-Enabled Secure Forecasting Nationwide Industry PM2.5 with LLM in the Heterogeneous Network" Electronics 13, no. 13: 2581. https://doi.org/10.3390/electronics13132581
APA StyleYin, C., Mao, Y., He, Z., Chen, M., He, X., & Rong, Y. (2024). Edge Computing-Enabled Secure Forecasting Nationwide Industry PM2.5 with LLM in the Heterogeneous Network. Electronics, 13(13), 2581. https://doi.org/10.3390/electronics13132581