Improving Text Classification with Large Language Model-Based Data Augmentation
Abstract
:1. Introduction
- We conduct experiments with two main LLM-based DA methods: rewrite samples and generate entirely new samples using ChatGPT, with both general and domain specific datasets.
- We further investigate optimum new generated samples’ size for DA.
- We proposed combining new samples with rewritten samples to further improve the classification result for minority classes.
2. Materials and Methods
2.1. Dataset
2.1.1. Reuters News Dataset
2.1.2. Mitigation Dataset
2.2. Machine Learning Model for Text Comprehension and Classification
2.3. Augmenting Generated Data to the Text Classification
2.3.1. Obtain Augmentation Data from ChatGPT
2.3.2. Integrate the Generated Data to the Model
- The binary cross-entropy loss is calculated from the given minibatch of training samples and backpropagation is performed.
- A minibatch of augmentation samples is randomly selected, the binary cross-entropy loss is calculated, and backpropagation is performed.
2.4. Experimental Design
2.4.1. Evaluate the DA Effectiveness of Rewritten Samples and New Generated Samples
2.4.2. Investigate the Optimum New Generated Samples’ Size for DA
2.4.3. Combining Rewritten Data with New Generated Data
2.5. Performance Measure
3. Results
3.1. Evaluate the DA Effectiveness of Rewritten Samples and New Generated Samples
3.2. Investigate the Optimum Samples Size of the LLM-Based DA Method
3.3. Combining Rewritten Data with New Generated Data
3.4. Difference Analysis of the Newly Generated Data and the Rewritten Data
3.5. Categorical Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LLM | Large Language Model |
DA | Data Augmentation |
NLP | Natural Language Processing |
Appendix A
References
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. arXiv 2023, arXiv:1910.10683. [Google Scholar]
- Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language Models are Few-Shot Learners. arXiv 2020, arXiv:2005.14165. [Google Scholar]
- Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language Models are Unsupervised Multitask Learners. Available online: https://api.semanticscholar.org/CorpusID:160025533 (accessed on 30 April 2024).
- Wei, J.; Zou, K. Eda: Easy data augmentation techniques for boosting performance on text classification tasks. arXiv 2019, arXiv:1901.11196. [Google Scholar]
- Akkaradamrongrat, S.; Kachamas, P.; Sinthupinyo, S. Text generation for imbalanced text classification. In Proceedings of the 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), Chonburi, Thailand, 10–12 July 2019; pp. 181–186. [Google Scholar]
- Hu, Z.; Tan, B.; Salakhutdinov, R.R.; Mitchell, T.M.; Xing, E.P. Learning data manipulation for augmentation and weighting. Adv. Neural Inf. Process. Syst. 2019, 32, 15764–15775. [Google Scholar]
- Xu, B.; Qiu, S.; Zhang, J.; Wang, Y.; Shen, X.; de Melo, G. Data augmentation for multiclass utterance classification—A systematic study. In Proceedings of the 28th International Conference on Computational Linguistics, Online, 8–13 December 2020; pp. 5494–5506. [Google Scholar]
- Chen, H.; Pieptea, L.F.; Ding, J. Construction and Evaluation of a High-Quality Corpus for Legal Intelligence Using Semiautomated Approaches. IEEE Trans. Reliab. 2022, 71, 657–673. [Google Scholar] [CrossRef]
- Karimi, A.; Rossi, L.; Prati, A. AEDA: An Easier Data Augmentation Technique for Text Classification. arXiv 2021, arXiv:2108.13230. [Google Scholar]
- Kolomiyets, O.; Bethard, S.; Moens, M.F. Model-Portability Experiments for Textual Temporal Analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, OR, USA, 19–24 June 2011. [Google Scholar]
- Xie, Z.; Wang, S.I.; Li, J.; Levy, D.; Nie, A.; Jurafsky, D.; Ng, A.Y. Data Noising as Smoothing in Neural Network Language Models. arXiv 2017, arXiv:1703.02573. [Google Scholar]
- Li, Y.; Cohn, T.; Baldwin, T. Robust Training under Linguistic Adversity. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Spain, 3–7 April 2017. [Google Scholar]
- Sennrich, R.; Haddow, B.; Birch, A. Improving Neural Machine Translation Models with Monolingual Data. arXiv 2016, arXiv:1511.06709. [Google Scholar]
- Ye, J.; Gao, J.; Li, Q.; Xu, H.; Feng, J.; Wu, Z.; Yu, T.; Kong, L. ZEROGEN: Efficient Zero-shot Learning via Dataset Generation. arXiv 2022, arXiv:2202.07922. [Google Scholar]
- Sarker, S.; Qian, L.; Dong, X. Medical Data Augmentation via ChatGPT: A Case Study on Medication Identification and Medication Event Classification. arXiv 2023, arXiv:2306.07297. [Google Scholar]
- Yuan, J.; Tang, R.; Jiang, X.; Hu, X. Large Language Models for Healthcare Data Augmentation: An Example on Patient-Trial Matching. arXiv 2023, arXiv:2303.16756. [Google Scholar]
- Cohen, S.; Presil, D.; Katz, O.; Arbili, O.; Messica, S.; Rokach, L. Enhancing social network hate detection using back translation and GPT-3 augmentations during training and test-time. Inf. Fusion 2023, 99, 101887. [Google Scholar] [CrossRef]
- Dai, H.; Liu, Z.; Liao, W.; Huang, X.; Cao, Y.; Wu, Z.; Zhao, L.; Xu, S.; Liu, W.; Liu, N.; et al. AugGPT: Leveraging ChatGPT for Text Data Augmentation. arXiv 2023, arXiv:2302.13007. [Google Scholar]
- Yoo, K.M.; Park, D.; Kang, J.; Lee, S.W.; Park, W. GPT3Mix: Leveraging Large-scale Language Models for Text Augmentation. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual, 16–20 November 2021; Association for Computational Linguistics: Stroudsburg, PA, USA, 2021; pp. 2225–2239. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, H.; Yoon, H.J. Enhancing Text Classification Models with Generative AI-aided Data Augmentation. In Proceedings of the 2023 IEEE International Conference on Artificial Intelligence Testing (AITest), Athens, Greece, 17–20 July 2023; pp. 138–145. [Google Scholar] [CrossRef]
- Loper, E.; Bird, S. Nltk: The natural language toolkit. arXiv 2002, arXiv:cs/0205028. [Google Scholar]
- Pracheil, B.M.; Levine, A.L.; Curtis, T.L.; Aldrovandi, M.S.; Uría-Martínez, R.; Johnson, M.M.; Welch, T. Influence of project characteristics, regulatory pathways, and environmental complexity on hydropower licensing timelines in the US. Energy Policy 2022, 162, 112801. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Huggingface’s transformers: State-of-the-art natural language processing. arXiv 2019, arXiv:1910.03771. [Google Scholar]
- Schramm, M.P.; Bevelhimer, M.S.; DeRolph, C.R. A synthesis of environmental and recreational mitigation requirements at hydropower projects in the United States. Environ. Sci. Policy 2016, 61, 87–96. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Singhal, K.; Tu, T.; Gottweis, J.; Sayres, R.; Wulczyn, E.; Hou, L.; Clark, K.; Pfohl, S.; Cole-Lewis, H.; Neal, D.; et al. Towards Expert-Level Medical Question Answering with Large Language Models. arXiv 2023, arXiv:2305.09617. [Google Scholar]
Macro (Unit: %) | Micro (Unit: %) | |||||
---|---|---|---|---|---|---|
Precision | Recall | F1 Score | Precision | Recall | F1 Score | |
without DA | 57.17 | 47.25 | 49.87 | 91.30 | 87.69 | 89.45 |
(53.82, 60.53) | (44.02, 50.48) | (46.70, 53.03) | (90.84, 91.75) | (86.80, 88.58) | (89.15, 89.75) | |
with rewritten data | 68.25 | 59.32 | 61.7 | 90.83 | 89.16 | 89.98 |
(65.91, 70.58) | (56.46, 62.19) | (59.27, 64.13) | (90.48, 91.17) | (88.68, 89.64) | (89.67, 90.30) | |
with new data | 75.23 | 61.44 | 65.73 | 92.50 | 87.90 | 90.13 |
(74.00, 76.46) | (59.65, 63.23) | (64.46, 66.99) | (91.80, 92.62) | (87.74, 89.06) | (90.07, 90.45) |
Macro (Unit: %) | Micro (Unit: %) | |||||
---|---|---|---|---|---|---|
Precision | Recall | F1 Score | Precision | Recall | F1 Score | |
without DA | 15.12 | 12.77 | 13.32 | 75.14 | 64.01 | 69.13 |
(14.69, 16.04) | (12.34, 13.20) | (12.82, 13.82) | (73.75, 76.52) | (62.11, 65.92) | (67.46, 70.80) | |
with rewritten data | 10.95 | 8.94 | 9.40 | 76.05 | 65.12 | 70.16 |
(9.54, 12.36) | (8.21, 9.67) | (8.55, 10.25) | (74.22, 77.88) | (63.84, 66.40) | (68.91, 71.41) | |
with new data | 17.86 | 14.23 | 15.42 | 77.69 | 64.71 | 70.60 |
(16.34, 19.39) | (13.19, 15.28) | (13.91, 16.38) | (75.46, 79.92) | (64.11, 65.31) | (69.46, 71.75) |
Macro (Unit: %) | Micro (Unit: %) | |||||
---|---|---|---|---|---|---|
Precision | Recall | F1 Score | Precision | Recall | F1 Score | |
5 samples | 70.10 | 57.22 | 61.16 | 91.43 | 88.50 | 89.94 |
(68.76, 71.43) | (55.92, 58.53) | (60.03, 62.29) | (91.00, 91.85) | (88.01, 89.00) | (89.72, 90.16) | |
10 samples | 73.93 | 59.41 | 63.72 | 92.27 | 88.11 | 90.13 |
(72.63, 75.22) | (57.51, 61.30) | (62.22, 65.23) | (91.74, 92.80) | (87.35, 88.86) | (89.1, 90.3) | |
15 samples | 74.43 | 60.53 | 64.84 | 91.73 | 88.52 | 90.19 |
(73.01, 75.85) | (59.04, 62.02) | (63.52, 66.16) | (91.61, 92.24) | (88.09, 88.96) | (89.99, 90.39) | |
20 samples | 75.23 | 61.44 | 65.73 | 92.50 | 87.90 | 90.13 |
(74.00, 76.46) | (59.65, 63.23) | (64.46, 66.99) | (91.80, 92.62) | (87.74, 89.06) | (90.07, 90.45) |
Macro (Unit: %) | Micro (Unit:%) | |||||
---|---|---|---|---|---|---|
Precision | Recall | F1 Score | Precision | Recall | F1 Score | |
10 samples | 18.14 | 14.17 | 15.13 | 77.15 | 64.58 | 70.29 |
(16.51, 19.76) | (13.44, 14.90) | (14.63, 15.64) | (73.46, 80.83) | (61.13, 68.04) | (67.07, 73.52) | |
20 samples | 17.86 | 14.23 | 15.42 | 77.69 | 64.71 | 70.60 |
(16.34, 19.39) | (13.19, 15.28) | (13.91, 16.38) | (75.46, 79.92) | (64.11, 65.31) | (69.46, 71.75) |
Macro (Unit: %) | Micro (Unit: %) | |||||
---|---|---|---|---|---|---|
Precision | Recall | F1 Score | Precision | Recall | F1 Score | |
without DA | 57.17 | 47.25 | 49.87 | 91.30 | 87.69 | 89.45 |
(53.82, 60.53) | (44.02, 50.48) | (46.70, 53.03) | (90.84, 91.75) | (86.80, 88.58) | (89.15, 89.75) | |
rewritten samples | 68.25 | 59.32 | 61.7 | 90.83 | 89.16 | 89.98 |
(65.91, 70.58) | (56.46, 62.19) | (59.27, 64.13) | (90.48, 91.17) | (88.68, 89.64) | (89.67, 90.30) | |
new samples | 75.23 | 61.44 | 65.73 | 92.50 | 87.90 | 90.13 |
(74.00, 76.46) | (59.65, 63.23) | (64.46, 66.99) | (91.80, 92.62) | (87.74, 89.06) | (90.07, 90.45) | |
rewritten + new | 76.05 | 63.02 | 67.14 | 92.31 | 88.40 | 90.31 |
(73.86, 78.25) | (61.04, 65.01) | (65.62, 68.66) | (91.01, 93.62) | (87.44, 89.36) | (89.99, 90.62) |
Macro (Unit: %) | Micro (Unit: %) | |||||
---|---|---|---|---|---|---|
Precision | Recall | F1 Score | Precision | Recall | F1 Score | |
without DA | 15.12 | 12.77 | 13.32 | 75.14 | 64.01 | 69.13 |
(14.69, 16.04) | (12.34, 13.20) | (12.82, 13.82) | (73.75, 76.52) | (62.11, 65.92) | (67.46, 70.80) | |
rewritten samples | 10.95 | 8.94 | 9.40 | 76.05 | 65.12 | 90.16 |
(9.54, 12.36) | (8.21, 9.67) | (8.55, 10.25) | (74.22, 77.88) | (63.84, 66.40) | (68.91, 71.41) | |
new samples | 17.86 | 14.23 | 15.42 | 77.69 | 64.71 | 70.60 |
(16.34, 19.39) | (13.19, 15.28) | (13.91, 16.38) | (75.46, 79.92) | (64.11, 65.31) | (69.46, 71.75) | |
rewritten + new | 11.9 | 9.92 10.23 | 79.18 | 65.83 | 71.89 | |
(11.45, 12.89) | (8.85, 10.69) | (9.45, 11.02) | (73.57, 79.98) | (61.90, 66.76) | (67.73, 72.24) |
Category | Samples | Avg_Noaug | Avg_Rephrase | Avg_New | Avg_Rephrase_New |
---|---|---|---|---|---|
earn | 2877 | 0.9810 | 0.9854 | 0.9863 | 0.9825 |
acq | 1650 | 0.9520 | 0.9732 | 0.9760 | 0.9767 |
money-fx | 538 | 0.7856 | 0.8585 | 0.8391 | 0.8427 |
grain | 433 | 0.9031 | 0.9420 | 0.9264 | 0.9451 |
crude | 389 | 0.8723 | 0.9058 | 0.9143 | 0.9068 |
trade | 368 | 0.7567 | 0.7995 | 0.8157 | 0.8037 |
interest | 347 | 0.7535 | 0.8280 | 0.8594 | 0.8527 |
wheat | 212 | 0.8537 | 0.8724 | 0.8584 | 0.8591 |
ship | 197 | 0.8000 | 0.8854 | 0.8902 | 0.8932 |
corn | 181 | 0.8761 | 0.8785 | 0.8692 | 0.8777 |
money-supply | 140 | 0.7822 | 0.7966 | 0.8339 | 0.7831 |
dlr | 131 | 0.6849 | 0.7733 | 0.7846 | 0.8182 |
sugar | 126 | 0.8934 | 0.9100 | 0.8768 | 0.9011 |
oilseed | 124 | 0.6273 | 0.7256 | 0.7231 | 0.7269 |
coffee | 111 | 0.9524 | 0.9479 | 0.9641 | 0.9487 |
gnp | 101 | 0.8186 | 0.8588 | 0.8169 | 0.8186 |
gold | 94 | 0.8577 | 0.9075 | 0.9087 | 0.9325 |
veg-oil | 87 | 0.6287 | 0.7074 | 0.6799 | 0.6616 |
soybean | 78 | 0.6122 | 0.7203 | 0.7145 | 0.6813 |
nat-gas | 75 | 0.6465 | 0.7660 | 0.6925 | 0.7284 |
livestock | 75 | 0.5350 | 0.6998 | 0.7125 | 0.7188 |
bop | 75 | 0.6772 | 0.7391 | 0.6831 | 0.6609 |
cpi | 69 | 0.6121 | 0.7145 | 0.6757 | 0.6607 |
cocoa | 55 | 0.9916 | 1.0000 | 1.0000 | 1.0000 |
reserves | 55 | 0.6975 | 0.7945 | 0.8182 | 0.8311 |
carcass | 50 | 0.5926 | 0.6547 | 0.6169 | 0.6114 |
copper | 47 | 0.8628 | 0.9149 | 0.9261 | 0.9304 |
jobs | 46 | 0.6790 | 0.6701 | 0.7224 | 0.7275 |
yen | 45 | 0.3556 | 0.6460 | 0.6195 | 0.6448 |
ipi | 41 | 0.8382 | 0.9212 | 0.9042 | 0.9246 |
iron-steel | 40 | 0.7032 | 0.7926 | 0.8688 | 0.8572 |
cotton | 39 | 0.7110 | 0.7386 | 0.7489 | 0.7310 |
gas | 37 | 0.6808 | 0.8646 | 0.8625 | 0.8278 |
barley | 37 | 0.6652 | 0.7463 | 0.7873 | 0.8225 |
rubber | 37 | 0.8312 | 0.8775 | 0.8886 | 0.9579 |
alum | 35 | 0.7176 | 0.9045 | 0.8871 | 0.9006 |
rice | 35 | 0.7118 | 0.8204 | 0.7259 | 0.7939 |
meal-feed | 30 | 0.2092 | 0.6469 | 0.4990 | 0.6037 |
palm-oil | 30 | 0.7022 | 0.8571 | 0.8388 | 0.8487 |
sorghum | 24 | 0.3567 | 0.5814 | 0.5387 | 0.6040 |
retail | 23 | 0.1333 | 0.6000 | 0.6429 | 0.6334 |
silver | 21 | 0.6590 | 0.7663 | 0.7776 | 0.7786 |
zinc | 21 | 0.8908 | 0.9173 | 0.8854 | 0.9364 |
pet-chem | 20 | 0.1943 | 0.7401 | 0.4578 | 0.6516 |
wpi | 19 | 0.7067 | 0.9146 | 0.9140 | 0.9123 |
tin | 18 | 0.8351 | 0.9565 | 0.9497 | 0.9565 |
rapeseed | 18 | 0.7157 | 0.7695 | 0.6549 | 0.7629 |
strategic-metal | 16 | 0.0333 | 0.3770 | 0.5645 | 0.5450 |
housing | 16 | 0.7131 | 0.8571 | 0.7755 | 0.8190 |
hog | 16 | 0.5438 | 0.6273 | 0.7567 | 0.7503 |
orange | 16 | 0.7469 | 0.9124 | 0.9000 | 0.9210 |
lead | 15 | 0.3336 | 0.8764 | 0.8143 | 0.9513 |
soy-oil | 14 | 0.0507 | 0.3505 | 0.2468 | 0.3417 |
heat | 14 | 0.6372 | 0.6616 | 0.7443 | 0.7073 |
fuel | 13 | 0.3428 | 0.6963 | 0.6613 | 0.6833 |
soy-meal | 13 | 0.0842 | 0.5265 | 0.6156 | 0.6171 |
lei | 12 | 0.9457 | 1.0000 | 1.0000 | 0.9714 |
sunseed | 11 | 0.3076 | 0.5428 | 0.4609 | 0.6367 |
dmk | 10 | 0.0333 | 0.0800 | 0.0000 | 0.0800 |
lumber | 10 | 0.2143 | 0.8436 | 0.8468 | 0.8436 |
tea | 9 | 0.3067 | 0.8857 | 0.9592 | 0.9428 |
income | 9 | 0.5578 | 0.7485 | 0.7273 | 0.7126 |
nickel | 8 | 0.1500 | 0.7000 | 1.0000 | 1.0000 |
oat | 8 | 0.2364 | 0.2794 | 0.4141 | 0.5200 |
l-cattle | 6 | 0.0900 | 0.4667 | 0.5381 | 0.6600 |
rape-oil | 5 | 0.0000 | 0.0000 | 0.0714 | 0.1000 |
sun-oil | 5 | 0.0000 | 0.0000 | 0.1905 | 0.0000 |
groundnut | 5 | 0.0000 | 0.0800 | 0.4000 | 0.4000 |
instal-debt | 5 | 0.0000 | 1.0000 | 0.9524 | 1.0000 |
platinum | 5 | 0.1100 | 0.6255 | 0.6697 | 0.7230 |
coconut | 4 | 0.1000 | 0.6667 | 0.3572 | 0.7000 |
coconut-oil | 4 | 0.1300 | 0.3000 | 0.1286 | 0.4000 |
jet | 4 | 0.0000 | 0.2333 | 0.4048 | 0.7333 |
propane | 3 | 0.0000 | 0.1000 | 0.6143 | 0.8400 |
potato | 3 | 0.3600 | 0.7200 | 1.0000 | 1.0000 |
cpu | 3 | 0.4000 | 1.0000 | 0.8571 | 1.0000 |
dfl | 2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
nzdlr | 2 | 0.0000 | 0.0000 | 0.0952 | 0.5334 |
palmkernel | 2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
copra-cake | 2 | 0.0000 | 0.0000 | 0.5714 | 0.0000 |
palladium | 2 | 0.0000 | 0.4000 | 0.7143 | 0.4000 |
naphtha | 2 | 0.0000 | 0.0800 | 0.5143 | 0.6667 |
rand | 2 | 0.0000 | 0.6000 | 1.0000 | 1.0000 |
castor-oil | 1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
nkr | 1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
sun-meal | 1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
groundnut-oil | 1 | 0.0000 | 0.0000 | 0.1429 | 0.0000 |
lin-oil | 1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
cotton-oil | 1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
rye | 1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Avg_Noaug | Avg_Rephrase | Avg_New | Avg_Rephrase_New | |
---|---|---|---|---|
majority (threshold = 40) | 0.7627 | 0.8266 | 0.8203 | 0.8217 |
minority (threshold = 40) | 0.3026 | 0.5209 | 0.5701 | 0.6064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Chen, H.; Ruggles, T.A.; Feng, Y.; Singh, D.; Yoon, H.-J. Improving Text Classification with Large Language Model-Based Data Augmentation. Electronics 2024, 13, 2535. https://doi.org/10.3390/electronics13132535
Zhao H, Chen H, Ruggles TA, Feng Y, Singh D, Yoon H-J. Improving Text Classification with Large Language Model-Based Data Augmentation. Electronics. 2024; 13(13):2535. https://doi.org/10.3390/electronics13132535
Chicago/Turabian StyleZhao, Huanhuan, Haihua Chen, Thomas A. Ruggles, Yunhe Feng, Debjani Singh, and Hong-Jun Yoon. 2024. "Improving Text Classification with Large Language Model-Based Data Augmentation" Electronics 13, no. 13: 2535. https://doi.org/10.3390/electronics13132535