Research and Application of the Median Filtering Method in Enhancing the Imperceptibility of Perturbations in Adversarial Examples
Abstract
:1. Introduction
2. Related Works
2.1. Object Detection
2.2. Adversarial Attack Methods for Object Detection
2.2.1. Attack Methods Based on Optimization Iteration
2.2.2. Attack Methods Based on Generative Adversarial Network
3. Method
3.1. Improvements Based on Median Filtering
3.1.1. Median Filtering
3.1.2. Network Framework
3.2. Loss Functions
4. Experiments
4.1. Experimental Setup
4.1.1. Datasets
4.1.2. Object Model
4.1.3. Experiment Details
4.2. Metrics
4.2.1. Visual Quality Evaluation Metrics
- (1)
- SSIM
- (2)
- PSNR
- (3)
- LPIPS [38]
4.2.2. Attack Evaluation Metrics
4.3. Experiment and Result Analysis
4.3.1. Visual Perception Experiment
4.3.2. Comparison Experiments of Different Filters
4.3.3. Comparative Experiments on COCO Dataset
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yenduri, G.; Ramalingam, M.; Selvi, G.C.; Supriya, Y.; Srivastava, G.; Maddikunta, P.K.R.; Raj, G.D.; Jhaveri, R.H.; Prabadevi, B.; Wang, W.; et al. GPT (Generative Pre-Trained Transformer)—A Comprehensive Review on Enabling Technologies, Potential Applications, Emerging Challenges, and Future Directions. IEEE Access 2024, 12, 54608–54649. [Google Scholar] [CrossRef]
- Khowaja, S.A.; Khuwaja, P.; Dev, K.; Wang, W.; Nkenyereye, L. ChatGPT Needs SPADE (Sustainability, PrivAcy, Digital divide, and Ethics) Evaluation: A Review. Cogn. Comput. 2024, 1–23. [Google Scholar] [CrossRef]
- Wu, X.; Duan, R.; Ni, J. Unveiling Security, Privacy, and Ethical Concerns of ChatGPT. J. Inf. Intell. 2023, 2, 102–115. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014. arXiv.1409.1556. [Google Scholar] [CrossRef]
- Zhao, Z.-Q.; Zheng, P.; Xu, S.-T.; Wu, X. Object Detection with Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Shi, J.; Gu, L. A review of deep learning methods for semantic segmentation of remote sensing imagery. Expert Syst. Appl. 2021, 169, 114417. [Google Scholar] [CrossRef]
- Nguyen, A.; Yosinski, J.; Clune, J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar] [CrossRef]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. arXiv 2013. arXiv.1312.6199. [Google Scholar] [CrossRef]
- Cao, J.; Li, Y.; Sun, H.; Xie, J.; Huang, K.; Pang, Y. A survey on deep learning based visual object detection. J. Image Graph. 2022, 27, 1697–1722. [Google Scholar] [CrossRef]
- Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M. Deep Learning for Generic Object Detection: A Survey. Int. J. Comput. Vis. 2020, 128, 261–318. [Google Scholar] [CrossRef]
- Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.; Zhang, J. End to End Learning for Self-Driving Cars. arXiv 2016. [Google Scholar] [CrossRef]
- Lian, Z.; Zeng, Q.; Wang, W.; Xu, D.; Meng, W.; Su, C. Traffic Sign Recognition Using Optimized Federated Learning in Internet of Vehicles. IEEE Internet Things J. 2024, 11, 6722–6729. [Google Scholar] [CrossRef]
- Guo, K.; Wu, Z.; Wang, W.; Ren, S.; Zhou, X.; Gadekallu, T.R.; Luo, E.; Liu, C. GRTR: Gradient Rebalanced Traffic Sign Recognition for Autonomous Vehicles. IEEE Trans. Autom. Sci. Eng. 2024, 1–13. [Google Scholar] [CrossRef]
- He, Y.; Meng, G.; Chen, K.; Hu, X.; He, J. Towards Security Threats of Deep Learning Systems: A Survey. IEEE Trans. Softw. Eng. 2020, 48, 1743–1770. [Google Scholar] [CrossRef]
- Liu, F.; Chen, D.; Wang, F.; Li, Z.; Xu, F. Deep Learning Based Single Sample Per Person Face Recognition: A Survey. arXiv 2020. arXiv.2006.11395. [Google Scholar] [CrossRef]
- Vakhshiteh, F.; Nickabadi, A.; Ramachandra, R. Threat of Adversarial Attacks on Face Recognition: A Comprehensive Survey. arXiv arXiv.2007.11709. 2020. [Google Scholar] [CrossRef]
- Wang, X.; Chen, J.; He, K.; Zhang, Z.; Du, R.; Li, Q.; She, J. Survey on adversarial attacks and defenses for object detection. J. Commun. 2023, 44, 260–277. [Google Scholar]
- Wang, Y.; Cao, T.; Zheng, Y.; Fang, Z.; Wang, Y.; Liu, Y.; Chen, L.; Fu, B. Improving the Imperceptibility of Adversarial Examples Based on Weakly Perceptual Perturbation in Key Regions. Secur. Commun. Netw. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Lecture Notes in Computer Science, Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, D.; Krähenbühl, P. Objects as Points. arXiv 2019. [Google Scholar] [CrossRef]
- Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully Convolutional One-Stage Object Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar] [CrossRef]
- Xie, C.; Wang, J.; Zhang, Z.; Zhou, Y.; Xie, L.; Yuille, A. Adversarial Examples for Semantic Segmentation and Object Detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1378–1387. [Google Scholar] [CrossRef]
- Li, Y.; Tian, D.; Chang, M.C.; Bian, X.; Lyu, S. Robust Adversarial Perturbation on Deep Proposal-based Models. arXiv 2018, arXiv.1809.05962. [Google Scholar] [CrossRef]
- Chow, K.-H.; Liu, L.; Loper, M.; Bae, J.; Gursoy, M.E.; Truex, S.; Wei, W.; Wu, Y. TOG: Targeted Adversarial Objectness Gradient Attacks on Real-time Object Detection Systems. In Proceedings of the 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), Atlanta, GA, USA, 28–31 October 2020. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, W.; Yang, Y.; Han, Z.; Xu, D.; Su, C. CNN- and GAN-based classification of malicious code families: A code visualization approach. Int. J. Intell. Syst. 2022, 37, 12472–12489. [Google Scholar] [CrossRef]
- Wei, X.; Liang, S.; Chen, N.; Cao, X. Transferable Adversarial Attacks for Image and Video Object Detection. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), Macao, China, 10–16 August 2019. [Google Scholar] [CrossRef]
- Li, Y.; Xu, G.; Li, W. FA: A Fast Method to Attack Real-time Object Detection Systems. In Proceedings of the 2020 IEEE/CIC International Conference on Communications in China (ICCC), Chongqing, China, 9–11 August 2020. [Google Scholar] [CrossRef]
- Deng, X.; Fang, Z.; Zheng, Y.; Wang, Y.; Huang, J.; Wang, X.; Cao, T. Adversarial examples with transferred camouflage style for object detection. J. Phys. Conf. Ser. 2021, 1738, 012130. [Google Scholar] [CrossRef]
- Sharma, Y.; Ding, G.W.; Brubaker, M.A. On the Effectiveness of Low Frequency Perturbations. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), Macao, China, 10–16 August 2019. [Google Scholar] [CrossRef]
- Song, S.; Chen, Y.; Cheung, N.M.; Kuo, C.C.J. Defense Against Adversarial Attacks with Saak Transform. arXiv 2018. arXiv.1808.01785. [Google Scholar] [CrossRef]
- Xiao, C.; Li, B.; Zhu, J.-Y.; He, W.; Liu, M.; Song, D. Generating Adversarial Examples with Adversarial Networks. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018. [Google Scholar] [CrossRef]
- Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar] [CrossRef]
SSIM | PSNR | LPIPS | |
---|---|---|---|
Adversarial example | 0.827 | 29.002 | 0.363 |
K = 3 | 0.969 | 36.966 | 0.056 |
K = 5 | 0.982 | 39.748 | 0.024 |
K = 7 | 0.987 | 41.457 | 0.014 |
K = 9 | 0.990 | 42.601 | 0.010 |
K = 11 | 0.991 | 43.407 | 0.008 |
Median | Mean | Gaussian | Bilateral | ||
---|---|---|---|---|---|
Pic. 1 | SSIM | 0.972 | 0.941 | 0.925 | 0.912 |
PSNR | 38.117 | 36.053 | 35.043 | 34.370 | |
LPIPS | 0.075 | 0.139 | 0.178 | 0.198 | |
Pic. 2 | SSIM | 0.977 | 0.949 | 0.938 | 0.930 |
PSNR | 35.902 | 34.042 | 33.174 | 32.633 | |
LPIPS | 0.047 | 0.117 | 0.156 | 0.173 |
SSIM | PSNR | LPIPS | |
---|---|---|---|
Median + Mean | 0.980 | 38.284 | 0.029 |
Median + Gaussian | 0.979 | 38.068 | 0.034 |
Median + Bilateral | 0.978 | 37.940 | 0.037 |
Mean + Gaussian | 0.966 | 36.842 | 0.075 |
Mean + Bilateral | 0.964 | 36.612 | 0.080 |
Gaussian + Bilateral | 0.958 | 36.027 | 0.096 |
ASR | |
---|---|
Adversarial example | 0.885 |
K = 3 | 0.780 |
K = 5 | 0.764 |
K = 7 | 0.761 |
K = 9 | 0.760 |
K = 11 | 0.753 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Dong, Y.; Sun, H. Research and Application of the Median Filtering Method in Enhancing the Imperceptibility of Perturbations in Adversarial Examples. Electronics 2024, 13, 2458. https://doi.org/10.3390/electronics13132458
He Y, Dong Y, Sun H. Research and Application of the Median Filtering Method in Enhancing the Imperceptibility of Perturbations in Adversarial Examples. Electronics. 2024; 13(13):2458. https://doi.org/10.3390/electronics13132458
Chicago/Turabian StyleHe, Yiming, Yanhua Dong, and Hongyu Sun. 2024. "Research and Application of the Median Filtering Method in Enhancing the Imperceptibility of Perturbations in Adversarial Examples" Electronics 13, no. 13: 2458. https://doi.org/10.3390/electronics13132458
APA StyleHe, Y., Dong, Y., & Sun, H. (2024). Research and Application of the Median Filtering Method in Enhancing the Imperceptibility of Perturbations in Adversarial Examples. Electronics, 13(13), 2458. https://doi.org/10.3390/electronics13132458