A Novel Self-Adaptation Approach for Multi-Domain Communication Considering Heterogenerous Power Service in Data Centers
Abstract
:1. Introduction
2. Communication Architecture
2.1. Multi-Domain Communication Architecture of Data Center Management Systems Including Local and Remote Communication
2.2. Key Technologies Supporting the Communication Network Architecture of Data Center Management Systems
2.2.1. Heterogeneous Communication Network Fusion
2.2.2. Edge Computing
3. Service Requirements Analysis of the Data Center Management System
4. Service and Communication Technology Adaptation Method
4.1. Construction of an Adaptability Evaluation System of Service and Communication Technology
4.2. Determination of Index Weights Based on the FAHP-Improved CRITIC Combined Weighting Model
4.2.1. Subjective Weighting
4.2.2. Objective Weighting
4.2.3. Calculation of Combination Weight
4.3. Data Preprocessing
4.4. Sorting and Decision Making Based on the GTOPSIS Method
4.4.1. TOPSIS
4.4.2. GRA
4.4.3. Hybrid Sorting Method
5. Example Analysis
5.1. Communication Technology Performance Index Data
5.2. Calculate the Weight of Differentiated Service Communication Requirement Indexes
5.3. Differentiated Service and Communication Technology Adaptation
5.4. Adaptability Result Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, Z.; Cao, Y.; Zhang, S.; Wang, P.; Liu, J.; Cheng, M.; Mao, H. Collaborative optimization of data center and power system in the context of energy Internet (I): Data center energy consumption mode. Chin. J. Electr. Eng. 2022, 42, 3161–3177. [Google Scholar] [CrossRef]
- Zhou, Z.; Shojafar, M.; Alazab, M.; Abawajy, J.; Li, F. AFED-EF: An Energy-Efficient VM Allocation Algorithm for IoT Applications in a Cloud Data Center. IEEE Trans. Green Commun. Netw. 2021, 5, 658–669. [Google Scholar] [CrossRef]
- Tianliang, Y.; Bing, Z.; Yichuan, M.; Li, L. Research progress on power consumption models for data center servers. Intell. Comput. Appl. 2023, 13, 17–24. [Google Scholar]
- Jinsong, W.; Shutao, L.; Dening, Z.; Guangtai, L.; Xuechang, Z. Summary of the First China Power Industry Data Center Summit Conference. South. Energy Constr. 2018, 5, 267–274. [Google Scholar] [CrossRef]
- Xu, D.; Dong, Y.; Zhong, X.; Gao, C. Communication Technology Evaluation in the Power System. In Proceedings of the Fifth International Conference on Intelligent Control and Information Processing (ICICIP), Dalian, China, 18–20 August 2014; pp. 63–67. [Google Scholar] [CrossRef]
- Dairu, J.; Xintong, L.; Yiyang, L.; Yunwei, Z. The implementation and application of security evaluation system of Electric Power Communication Network. In Proceedings of the 2016 2nd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 14–17 October 2016; pp. 1162–1165. [Google Scholar] [CrossRef]
- Azhar, N.A.; Mohamed Radzi, N.A.; Mustafa, I.S.; Azmi, K.H.M.; Samidi, F.S.; Zulkifli, I.T.; Abdullah, F.; Jamaludin, M.Z.; Ismail, A.; Zainal, A.M. Selecting Communication Technologies for an Electrical Substation Based on the AHP. IEEE Access 2023, 11, 110724–110735. [Google Scholar] [CrossRef]
- Daud, A.; Jiang, W. Evaluating appropriate communication technology for smart grid by using a comprehensive decision-making approach fuzzy TOPSIS. Soft Comput. 2022, 26, 8521–8536. [Google Scholar]
- Fang, Y.; Xianyong, F.; Zhao, L. Advanced Microgrid Energy Management System for Future Sustainable and Resilient Power Grid. IEEE Trans. Ind. Appl. 2019, 55, 7251–7260. [Google Scholar]
- Ahuja, K.; Khosla, A. Network selection criterion for ubiquitous communication provisioning in smart cities for smart energy system. J. Netw. Comput. Appl. 2018, 127, 82–91. [Google Scholar] [CrossRef]
- Strasser, T.; Andren, F.; Kathan, J.; Cecati, C.; Buccella, C.; Siano, P.; Leitao, P.; Zhabelova, G.; Vyatkin, V.; Vrba, P.; et al. A Review of Architectures and Concepts for Intelligence in Future Electric Energy Systems. IEEE Trans. Ind. Electron. 2015, 62, 2424–2438. [Google Scholar] [CrossRef]
- Hao, L.C.; Nirwan, A. The Progressive Smart Grid System from Both Power and Communications Aspects. IEEE Commun. Surv. Tutor. 2011, 14, 799–821. [Google Scholar]
- Zaballos, A.; Vallejo, A.; Selga, J. Heterogeneous communication architecture for the smart grid. IEEE Netw. Mag. Comput. Commun. 2011, 25, 30–37. [Google Scholar] [CrossRef]
- Zhang, W.; Miao, H. Cloud-edge-collaboration-based flexibility scheduling strategy considering communication and computation delay. Csee J. Power Energy Syst. 2023, 1–13. [Google Scholar] [CrossRef]
- Parvin, K.; Hannan, M.A.; Mun, L.H.; Lipu, M.H.; Abdolrasol, M.G.; Ker, P.J.; Dong, Z.Y. The future energy internet for utility energy service and demand-side management in smart grid: Current practices, challenges and future directions. Sustain. Energy Technol. Assess. 2022, 53, 102648. [Google Scholar] [CrossRef]
- Li, W.; Yang, T.; Delicato, F.C.; Pires, P.F.; Tari, Z.; Khan, S.U.; Zomaya, A.Y. On Enabling Sustainable Edge Computing with Renewable Energy Resources. IEEE Commun. Mag. 2018, 56, 94–101. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, S.; Li, Y.; Sun, Y. Edge-Cloud Collaboration Architecture of Virtual Power Plant for Large-scale EV Integration. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October–1 November 2020; pp. 4273–4276. [Google Scholar] [CrossRef]
- Ahmadzadeh, S.; Parr, G.; Zhao, W. A Review on Communication Aspects of Demand Response Management for Future 5G IoT- Based Smart Grids. IEEE Access 2021, 9, 77555–77571. [Google Scholar] [CrossRef]
- Liao, Y.F.; Wei, C.Y.; Ping, W.X.; Guo, F.; Qi, Z. Study on selection of communication access networks for typical terminal units in power grid. Electr. Power Inf. Commun. Technol. 2021, 19, 91–97. [Google Scholar] [CrossRef]
- Zhe, L.P.; Feng, X.Z.; Wei, C.Z.; Chao, W.Y.; Wei, L.D. Analysis of communication matching technology of power terminal communication access network. J. Electr. Power Sci. Technol. 2021, 36, 125–134. [Google Scholar] [CrossRef]
- Cheng, Z.; Di, Z.; Yang, L.; Yi, F.J.; Bo, L.X.; Yue, Z.X.; Fu, Z.X. Research on the Adaptation of Digital Perception Service and Communication Technologies for Local Communication Network in Urban Grid. Electr. Power 2023, 56, 86–98. [Google Scholar]
Scale | Definition | Triangular Fuzzy Numbers |
---|---|---|
1 | equally important | (1,1,1) |
3 | slightly important | (2,3,4) |
5 | obviously important | (4,5,6) |
7 | very important | (6,7,8) |
9 | extremely important | (9,9,9) |
2 | (1,2,3) | |
4 | interval value between two adjacent levels | (3,4,5) |
6 | (5,6,7) | |
8 | (7,8,9) |
C1 | C2 | C3 | C4 | C5 | C6 | |
---|---|---|---|---|---|---|
D1 | 1 Gbps | 2 ms | 100 | 100 | 15 km | |
D2 | 200 Mbps | 60 ms | 60 | 40 | 20 km | |
D3 | 100 Mbps | 30 ms | 100 | 60 | 15 km | |
D4 | 500 kbps | 100 ms | 80 | 60 | 10 km | |
D5 | 1 Mbps | 5 ms | 100 | 100 | 1200 m | |
D6 | 2 Mbps | 10 ms | 100 | 60 | 1600 m | |
D7 | 200 Mbps | 15 ms | 80 | 80 | 300 m | |
D8 | 50 kpbs | 100 ms | 100 | 40 | 2000 m | |
D9 | 20 Mbps | 20 ms | 80 | 60 | 100 m |
C1 | C2 | C3 | C4 | C5 | C6 | |
---|---|---|---|---|---|---|
B1 | 0.0562 | 0.2857 | 0.2469 | 0.2793 | 0.0583 | 0.0736 |
B2 | 0.0653 | 0.1208 | 0.2969 | 0.1022 | 0.2205 | 0.1943 |
B3 | 0.2106 | 0.0885 | 0.1509 | 0.2763 | 0.1956 | 0.0781 |
B4 | 0.0643 | 0.2095 | 0.0956 | 0.2941 | 0.0972 | 0.2393 |
C1 | C2 | C3 | C4 | C5 | C6 | |
---|---|---|---|---|---|---|
B1 | 0.0902 | 0.2546 | 0.2247 | 0.2704 | 0.0737 | 0.0864 |
B2 | 0.0963 | 0.0989 | 0.2483 | 0.0909 | 0.256 | 0.2096 |
B3 | 0.2912 | 0.0679 | 0.1184 | 0.2305 | 0.213 | 0.079 |
B4 | 0.0968 | 0.1752 | 0.0817 | 0.2672 | 0.1153 | 0.2638 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, X.-D.; Liu, S.-D.; Hou, M.; Liu, C.; Zhang, X. A Novel Self-Adaptation Approach for Multi-Domain Communication Considering Heterogenerous Power Service in Data Centers. Electronics 2024, 13, 2334. https://doi.org/10.3390/electronics13122334
Bu X-D, Liu S-D, Hou M, Liu C, Zhang X. A Novel Self-Adaptation Approach for Multi-Domain Communication Considering Heterogenerous Power Service in Data Centers. Electronics. 2024; 13(12):2334. https://doi.org/10.3390/electronics13122334
Chicago/Turabian StyleBu, Xian-De, Shi-Dong Liu, Meng Hou, Chuan Liu, and Xi Zhang. 2024. "A Novel Self-Adaptation Approach for Multi-Domain Communication Considering Heterogenerous Power Service in Data Centers" Electronics 13, no. 12: 2334. https://doi.org/10.3390/electronics13122334
APA StyleBu, X.-D., Liu, S.-D., Hou, M., Liu, C., & Zhang, X. (2024). A Novel Self-Adaptation Approach for Multi-Domain Communication Considering Heterogenerous Power Service in Data Centers. Electronics, 13(12), 2334. https://doi.org/10.3390/electronics13122334