An Improved Current Signal Extraction-Based High-Frequency Pulsating Square-Wave Voltage Injection Method for Interior Permanent-Magnet Synchronous Motor Position-Sensorless Control
Abstract
:1. Introduction
2. Analysis of HF Pulsating Square-Wave Voltage Injection Methods
2.1. Mathematical Principle of HF PSWVI
2.2. Analysis of the Conventional Signal-Extraction Methods
3. Proposed HF PSWVI Method Based on Improved Signal-Extraction Strategy
3.1. Review of NF Characteristics
3.2. HF PSWVI Strategy Based on Improved Signal-Extraction Method
4. Simulation and Experimental Validations
4.1. Simulation Analysis
4.2. Experimental Validations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HF | High-frequency |
IPMSM | Interior permanent-magnet synchronous motor |
FOC | Field-oriented control |
BPF | Band-pass filter |
LPF | Low-pass filter |
NF | Notch filter |
EMF | Electromotive force |
SNR | Signal-to-noise ratio |
PSVI | Pulsating sinusoidal voltage injection |
PSWVI | Pulsating square-wave voltage injection |
TDFSE | Time-delay filter signal extraction |
NFSE | NF-based signal extraction |
References
- Song, X.; Fang, J.; Han, B.; Zheng, S. Adaptive compensation method for high-speed surface PMSM sensorless drives of EMF-based position estimation error. IEEE Trans. Power Electron. 2016, 31, 1438–1449. [Google Scholar] [CrossRef]
- Kumar, C.D.; Shiva, B.S.; Verma, V. Vector Control of PMSM Drive with Single Current Sensor. In Proceedings of the 2020 IEEE Students Conference on Engineering & Systems (SCES), Prayagraj, India, 10–12 July 2020; pp. 1–6. [Google Scholar]
- Zhang, G.; Wang, G.; Xu, D.; Zhao, N. ADALINE-NetworkBased PLL for Position Sensorless Interior Permanent Magnet Synchronous Motor Drives. IEEE Trans. Power Electron. 2016, 31, 1450–1460. [Google Scholar] [CrossRef]
- Wang, G.; Yang, R.; Xu, D. DSP-Based Control of Sensorless IPMSM Drives for Wide-Speed-Range Operation. IEEE Trans. Ind. Electron. 2013, 60, 720–727. [Google Scholar] [CrossRef]
- Gandhi, R.; Sankararao, E.; Mishra, P.; Roy, R. A Novel Technique to Correct the Unwanted Zero Position Signal of Faulty Encoder for Accurate Speed and Position Estimation of PMSM Drive. Iran. J. Sci. Technol. Trans. Electr. Eng. 2024, 48, 289–301. [Google Scholar] [CrossRef]
- Wu, T.; Luo, D.; Wu, X.; Liu, K.; Huang, S.; Peng, X. Square-wave voltage injection based PMSM sensorless control considering time delay at low switching frequency. IEEE Trans. Ind. Electron. 2021, 69, 5525–5535. [Google Scholar] [CrossRef]
- Wang, G.; Valla, M.; Solsona, J. Position sensorless permanent magnet synchronous machine drives—A review. IEEE Trans. Ind. Electron. 2019, 67, 5830–5842. [Google Scholar] [CrossRef]
- Chen, Z.; Tomita, M.; Doki, S.; Okuma, S. An extended electromotive force model for sensorless control of interior permanentmagnet synchronous motors. IEEE Trans. Ind. Electron. 2003, 50, 288–295. [Google Scholar] [CrossRef]
- Boldea, I.; Paicu, M.C.; Andreescu, G.-D. Active flux concept for motion-sensorless unified AC drives. IEEE Trans. Power Electron. 2008, 23, 2612–2618. [Google Scholar] [CrossRef]
- Zuo, Y.; Lai, C.; Iyer, K.L. A review of sliding mode observer based sensorless control methods for PMSM drive. IEEE Trans. Power Electron. 2023, 38, 11352–11367. [Google Scholar] [CrossRef]
- Ding, L.; Li, Y.W.; Zargari, N.R. Discrete-time SMO sensorless control of current source converter-fed PMSM drives with low switching frequency. IEEE Trans. Ind. Electron. 2021, 68, 2120–2129. [Google Scholar] [CrossRef]
- Salman, E.; Yilmaz, M. A Novel Sensorless Control Approach for IPMSM Using Extended Flux Based PI Observer for Washing Machine Applications. Int. J. Control. Autom. Syst. 2023, 21, 2313–2322. [Google Scholar] [CrossRef]
- Filho, C.J.V.; Vieira, R.P. Adaptive full-order observer analysis and design for sensorless interior permanent magnet synchronous motors drives. IEEE Trans. Ind. Electron. 2021, 68, 6527–6536. [Google Scholar] [CrossRef]
- Gou, L.; Wang, C.; You, X.; Zhou, M.; Dong, S. IPMSM sensorless control for zero-and low-speed regions under low switching frequency condition based on fundamental model. IEEE Trans. Transp. Electrif. 2021, 8, 1182–1193. [Google Scholar] [CrossRef]
- Xia, B.; Huang, S.; Zhang, J.; Zhang, W.; Liao, W.; Gao, J.; Wu, X. An Improved High-Frequency Voltage Signal Injection-based Sensorless Control of IPMSM Drives with Current Observer. IEEE Trans. Transp. Electrif 2023. Early access. [Google Scholar] [CrossRef]
- Chen, S.; Ding, W.; Wu, X.; Huo, L.; Hu, R.; Shi, S. Sensorless control of IPMSM drives using high-frequency pulse voltage injection with random pulse sequence for audible noise reduction. IEEE Trans. Power Electron. 2023, 38, 9395–9408. [Google Scholar] [CrossRef]
- Basic, D.; Malrait, F.; Rouchon, P. Current controller forlow-frequency signal injection and rotor flux position tracking at low speeds. IEEE Trans. Ind. Electron. 2011, 58, 4010–4022. [Google Scholar] [CrossRef]
- Mai, Z.; Xiao, F.; Fu, K.; Liu, J.; Lian, C.; Li, K.; Zhang, W. HF pulsating carrier voltage injection method based on improved position error signal extraction strategy for PMSM position sensorless control. IEEE Trans. Power Electron. 2021, 36, 9348–9360. [Google Scholar] [CrossRef]
- Corley, M.J.; Lorenz, R.D. Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds. IEEE Trans. Ind. Appl. 1998, 34, 784–789. [Google Scholar] [CrossRef]
- Linke, M.; Kennel, R.; Holtz, J. Sensorless speed and position control of synchronous machines using alternating carrier injection. In Proceedings of the IEEE International Electric Machines and Drives Conference (IEMDC’03), Madison, WI, USA, 1–4 June 2003; Volume 2, pp. 1211–1217. [Google Scholar]
- Naderian, M.; Markadeh, G.A.; Karimi-Ghartemani, M.; Mojiri, M. Improved sensorless control strategy for IPMSM using an ePLL approach with high-frequency injection. IEEE Trans. Ind. Electron. 2023, 71, 2231–2241. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, G.; Wang, H.; Xiao, D.; Li, L.; Xu, D.G. Pseudo-Random-Frequency Sinusoidal Injection Based Sensorless IPMSM Drives with Tolerance for System Delays. IEEE Trans. Powe Electron. 2019, 34, 3623–3632. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, S.; Li, Y. A Novel Dual Random Scheme in Signal Injection Sensorless Control of IPMSM Drives for High-Frequency Harmonics Reduction. IEEE Trans. Power Electron. 2023, 99, 1–13. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, H.; Zhao, N.; Li, C.; Xu, D. Sensorless control of IPMSM drives using a pseudo-random phase-switching fixed-frequency signal injection scheme. IEEE Trans. Ind. Electron. 2018, 65, 7660–7671. [Google Scholar] [CrossRef]
- Szalai, T.; Berger, G.; Petzoldt, J. Stabilizing sensorless control down to zero speed by using the high-frequency current amplitude. IEEE Trans. Power Electron. 2014, 29, 3646–3656. [Google Scholar] [CrossRef]
- Reigosa, D.D.; Briz, F.; Blanco, C.; Guerrero, J.M. Sensorlesscontrol of doubly-fed induction generators based on stator high frequency signal injection. IEEE Trans. Ind. Appl. 2014, 50, 3382–3391. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Yang, S.; Liu, S. Unified graphical model of highfrequency signal injection methods for PMSM sensorless control. IEEE Trans. Ind. Electron. 2020, 67, 4411–4421. [Google Scholar] [CrossRef]
- Gong, L.; Zhu, Z. Robust initial rotor position estimation of permanentmagnet brushless AC machines with carrier-signal-injection-based sensorless control. IEEE Trans. Ind. Appl. 2013, 49, 2602–2609. [Google Scholar] [CrossRef]
- Yoon, Y.; Sul, S.; Morimoto, S.; Ide, K. High-bandwidth sensorless algorithm for ac machines based on square-wave-type voltage injection. IEEE Trans. Ind. Appl. 2011, 47, 1361–1370. [Google Scholar] [CrossRef]
- Tang, Q.; Shen, A.; Luo, X.; Xu, J. PMSM sensorless control by injecting HF pulsating carrier signal into ABC frame. IEEE Trans. Power Electron. 2017, 32, 3767–3776. [Google Scholar] [CrossRef]
- Luo, X.; Tang, Q.; Shen, A.; Zhang, Q. PMSM sensorless control by injecting HF pulsating carrier signal into estimated fixed-frequency rotating reference frame. IEEE Trans. Ind. Electron. 2016, 63, 2294–2303. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, G.; Yuan, B.; Liu, R.; Xu, D. Active disturbance rejection control strategy for signal injection-based sensorless IPMSM drives. IEEE Trans. Transp. Electrif. 2017, 4, 330–339. [Google Scholar] [CrossRef]
- Karimi-Ghartemani, M.; Khajehoddin, S.A.; Jain, P.K.; Bakhshai, A.; Mojiri, M. Addressing DC component in PLL and notch filter algorithms. IEEE Trans. Power Electron. 2011, 27, 78–86. [Google Scholar] [CrossRef]
- Ge, Y.; Yang, L.; Ma, X. A harmonic compensation method for SPMSM sensorless control based on the orthogonal master-slave adaptive notch filter. IEEE Trans. Power Electron. 2021, 36, 11701–11711. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, G.; Ni, R.; Xu, D. Adaptive notch filter based harmonic self-compensated sliding-mode observer for position sensorless IPMSM drives. In Proceedings of the 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Republic of Korea, 1–5 June 2015; pp. 1123–1128. [Google Scholar]
- Wang, Y.; Xue, Z.; Luo, G.; Chen, Z. A Time-Delay Compensation Method for PMSM Sensorless Control System under Low Switching Frequency. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; pp. 880–885. [Google Scholar]
- Guo, B.-Y.; Pei, S.-C.; Lu, W.-Y. Pole-zero assignment of all-pass-based notch filters. IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 477–481. [Google Scholar]
- Sharma, A.; Rawat, T.K.; Agrawal, A. Design and FPGA implementation of lattice wave digital notch filter with minimal transient duration. IET Signal Process. 2020, 14, 440–447. [Google Scholar] [CrossRef]
Parameters | Values | Parameters | Values |
---|---|---|---|
DC link voltage | 900 V | No. of pole pairs p | 4 |
Rated power | 300 kW | Stator resistance | 0.0066254 Ω |
Rated frequency | 200 Hz | d-axis inductance | 0.3062 mH |
Rated current | 533 A (RMS) | q-axis inductance | 0.498 mH |
Peak current | 696 A (RMS) | Flux linkage | 0.128046 Wb |
Parameter Items | Parameter Values |
---|---|
PI for the stator current | |
Notch filter | |
PI for the position observer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, D.; Wu, Q.; Zhang, J.; Diao, L. An Improved Current Signal Extraction-Based High-Frequency Pulsating Square-Wave Voltage Injection Method for Interior Permanent-Magnet Synchronous Motor Position-Sensorless Control. Electronics 2024, 13, 2227. https://doi.org/10.3390/electronics13112227
Meng D, Wu Q, Zhang J, Diao L. An Improved Current Signal Extraction-Based High-Frequency Pulsating Square-Wave Voltage Injection Method for Interior Permanent-Magnet Synchronous Motor Position-Sensorless Control. Electronics. 2024; 13(11):2227. https://doi.org/10.3390/electronics13112227
Chicago/Turabian StyleMeng, Dongyi, Qiya Wu, Jia Zhang, and Lijun Diao. 2024. "An Improved Current Signal Extraction-Based High-Frequency Pulsating Square-Wave Voltage Injection Method for Interior Permanent-Magnet Synchronous Motor Position-Sensorless Control" Electronics 13, no. 11: 2227. https://doi.org/10.3390/electronics13112227
APA StyleMeng, D., Wu, Q., Zhang, J., & Diao, L. (2024). An Improved Current Signal Extraction-Based High-Frequency Pulsating Square-Wave Voltage Injection Method for Interior Permanent-Magnet Synchronous Motor Position-Sensorless Control. Electronics, 13(11), 2227. https://doi.org/10.3390/electronics13112227