Airborne Radar Space–Time Adaptive Processing Algorithm Based on Dictionary and Clutter Power Spectrum Correction
Abstract
:1. Introduction
2. Signal Model
3. STAP Algorithm for Airborne Radar Based on Dictionary and Clutter Power Spectrum Joint Correction
3.1. Principle of Sparse Recovery
3.2. Dictionary Mismatch Problem
3.3. Dictionary Correction Method
3.4. Sparse Bayesian Learning Method
3.5. The Process of Proposed Algorithm
4. Simulation Experiment Analysis
4.1. Clutter Power Spectrum Analysis
4.2. Analysis of Clutter Suppression Performance
4.3. Analysis of the Convergence Performance
4.4. Moving Target Detection Performance Analysis
4.5. Clutter Power Spectrum Analysis with DCPSJC-STAP Algorithm at Different Yaw Angles
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brennan, L.E.; Reed, L.S. Theory of Adaptive Radar. IEEE Trans. Aerosp. Electron. Syst. 1973, AES-9, 237–252. [Google Scholar] [CrossRef]
- Reed, I.S.; Mallett, J.D.; Brennan, L.E. Rapid Convergence Rate in Adaptive Arrays. IEEE Trans. Aerosp. Electron. Syst. 1974, AES-10, 853–863. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, W.; Zhang, T.; Xing, M.; Wang, Y. Improved Dimension-Reduced Structures of 3D-STAP on Nonstationary Clutter Suppression for Space-Based Early Warning Radar. Remote Sens. 2022, 14, 4011. [Google Scholar] [CrossRef]
- Xiong, Y.; Xie, W.; Liu, W.; Gao, X. Unified Model and Performance Analysis of Airborne Radar Reduced-rank STAP Method. In Proceedings of the 2023 3rd International Conference on Frontiers of Electronics, Information and Computation Technologies (ICFEICT), Yangzhou, China, 26–29 May 2023. [Google Scholar]
- Shi, J.; Cheng, Z.; He, Z.; Zhang, W.; Lu, X. Angle-Doppler Channel Selection Method via Sparse Recovery for Reduced-Dimension STAP. J. Univ. Electron. Sci. Technol. China 2022, 51, 506–513. [Google Scholar]
- Brandfass, M.; Meyer-Hilberg, J.; Dallinger, A.; Appel, H. Towards Cognitive Radar via Knowledge Aided Processing for Airborne and Ground based Radar Applications. In Proceedings of the 2019 20th International Radar Symposium (IRS), Ulm, Germany, 26–28 June 2019. [Google Scholar]
- Barbary, M.; Zong, P. Novel anti-stealth on sub-nyquist scattering wave deception jammer with stratospheric balloon-borne bistatic radar using KA-STAP-FTRAB algorithm. IEEE Sens. J. 2015, 15, 6437–6453. [Google Scholar] [CrossRef]
- Gao, Z.; Tao, H.; Zhao, J. Robust STAP Algorithm Based on Joint Sparse Recovery of Clutter Spectrum for Airborne Radar. Acta Electron. Sin. 2016, 44, 2796–2801. [Google Scholar]
- Ye, H.; Li, Z.; Liu, Z.; Wu, J.; Yang, H.; Yang, J. Clutter-Ridge Matched SR-STAP Technique for Non-stationary Clutter Suppression. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020. [Google Scholar]
- Sen, S. OFDM Radar Space-Time Adaptive Processing by Exploiting Spatio-Temporal Sparsity. IEEE Trans. Signal Process. 2013, 61, 118–130. [Google Scholar] [CrossRef]
- Yang, Z.C.; Li, X.; Wang, H.Q.; Jiang, W. On Clutter Sparsity Analysis in Space-Time Adaptive Processing Airborne Radar. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1214–1218. [Google Scholar] [CrossRef]
- Yang, Z.; Li, X.; Wang, H.; Nie, L. Sparsity-based space-time adaptive processing using complex-valued Homotopy technique for airborne radar. IET Signal Process. 2014, 8, 552–564. [Google Scholar] [CrossRef]
- Yang, Z.; Li, X.; Wang, H.; Jiang, W. Adaptive clutter suppression based on iterative adaptive approach for airborne radar. Signal Process. 2013, 93, 3567–3577. [Google Scholar] [CrossRef]
- Yang, Z.C.; Fa, R.; Qin, Y.L.; Li, X.; Wang, H. Direct Data Domain Sparsity-Based STAP Utilizing Subaperture Smoothing Techniques. Int. J. Antennas Propag. 2015, 2015, 171808. [Google Scholar] [CrossRef]
- Yang, Z.C.; Li, X.; Wang, H.Q.; Fa, R. Knowledge-aided STAP with sparse-recovery by exploiting spatio-temporal sparsity. IET Signal Process. 2016, 10, 150–161. [Google Scholar] [CrossRef]
- Gao, Z.Q.; Tao, H.H. Robust STAP algorithm based on knowledge-aided SR for airborne radar. IET Radar Sonar Navig. 2017, 11, 321–329. [Google Scholar]
- Li, M.; Sun, G.H.; Tong, J.; He, Z. Training-free moving target detection with uncertain a priori knowledge for airborne radar. IET Radar Sonar Navig. 2020, 14, 372–380. [Google Scholar] [CrossRef]
- Wang, Z.T.; Xie, W.C.; Duan, K.Q.; Wang, Y. Clutter suppression algorithm based on fast converging sparse Bayesian learning for airborne radar. Signal Process. 2017, 130, 159–168. [Google Scholar] [CrossRef]
- Zhang, W.; He, Z.S.; Li, H.Y. Space time adaptive processing based on sparse recovery and clutter reconstructing. IET Radar Sonar Navig. 2019, 13, 789–794. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yang, Z.C.; Huang, J.J.; de Lamare, R.C. Robust Two-Stage Reduced-Dimension Sparsity-Aware STAP for Airborne Radar with Coprime Arrays. IEEE Trans. Signal Process. 2020, 68, 81–96. [Google Scholar] [CrossRef]
- Maria, S.; Fuchs, J.-J. Application of the global matched filter to stap data an efficient algorithmic approach. In Proceedings of the 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 14–19 May 2006; Volume 10, pp. 4683–4686. [Google Scholar]
- Maria, S.; Fuchs, J.-J. Detection performance for the GMF applied to STAP data. In Proceedings of the XIV European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, 4–8 September 2006; pp. 1–5. [Google Scholar]
- Sun, K.; Zhang, H.; Li, G.; Meng, H.; Wang, X. A Novel STAP Algorithm Using Sparse Recovery Technique. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Sun, K.; Meng, H.D.; Wang, Y.L.; Wang, X. Direct data domain STAP using sparse representation of clutter spectrum. Signal Process. 2011, 91, 2222–2236. [Google Scholar] [CrossRef]
- Sun, K.; Meng, H.D.; Lapierre, F.D.; Wang, X. Registration-based compensation using sparse representation in conformal-array STAP. Signal Process. 2011, 91, 2268–2276. [Google Scholar] [CrossRef]
- Bai, G.T.; Tao, R.; Zhao, J.; Bai, X. Parameter-searched OMP method for eliminating basis mismatch in space-time spectrum estimation. Signal Process. 2017, 138, 11–15. [Google Scholar] [CrossRef]
- Li, Z.H.; Zhang, Y.S.; He, X.Y.; Guo, Y. Low-Complexity Off-Grid STAP Algorithm Based on Local Search Clutter Subspace Estimation. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1862–1866. [Google Scholar] [CrossRef]
- Yuan, H.D.; Xu, H.; Duan, K.Q.; Xie, W.; Liu, W.; Wang, Y. Sparse Bayesian Learning-Based Space-Time Adaptive Processing with Off-Grid Self-Calibration for Airborne Radar. IEEE Access 2018, 6, 47296–47307. [Google Scholar] [CrossRef]
- Feng, W.K.; Guo, Y.D.; Zhang, Y.S.; Gong, J. Airborne radar space time adaptive processing based on atomic norm minimization. Signal Process. 2018, 148, 31–40. [Google Scholar] [CrossRef]
- Pan, J.; Tang, J.; Li, W.; Zhang, Y. Sparse Clutter estimation for STAP based on Decouple Atomic Norm minimization. In Proceedings of the International Conference on Radar (RADAR), Brisbane, Australia, 27–31 August 2018. [Google Scholar]
- Yang, Z.C.; De Lamare, R.C.; Liu, W.J. Sparsity-Based STAP Using Alternating Direction Method with Gain/Phase Errors. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 2756–2768. [Google Scholar]
- Zhu, Y.; Yang, Z.C.; Huang, J.J. Robust Sparsity-Based Space-Time Adaptive Processing Considering Array Gain/Phase Errors. In Proceedings of the 13th IEEE International Conference on Signal Processing (ICSP), Chengdu, China, 6–10 November 2016. [Google Scholar]
- Liu, M.X.; Wang, X.G.; Zou, L. Robust STAP With Reduced Mutual Coupling and Enhanced DOF Based on Super Nested Sampling Structure. IEEE Access 2019, 7, 175420–175428. [Google Scholar] [CrossRef]
- Li, Z.H.; Guo, Y.D.; Zhang, Y.S.; Zhou, H.; Zheng, G. Sparse Bayesian Learning Based Space-Time Adaptive Processing Against Unknown Mutual Coupling for Airborne Radar Using Middle Subarray. IEEE Access 2019, 7, 6094–6108. [Google Scholar] [CrossRef]
- He, P.Y.; He, S.; Yang, Z.W.; Huang, P. An Off-Grid STAP Algorithm Based on Local Mesh Splitting with Bistatic Radar System. IEEE Signal Process. Lett. 2020, 27, 1355–1359. [Google Scholar] [CrossRef]
- Su, Y.Y.; Wang, T.; Tao, F.Y.; Li, Z. A Grid-Less Total Variation Minimization-Based Space-Time Adaptive Processing for Airborne Radar. IEEE Access 2020, 8, 29334–29343. [Google Scholar] [CrossRef]
- Duan, K.; Wang, Z.; Xie, W.; Chen, H.; Wang, Y. Sparsity-based STAP algorithm with multiple measurement vectors via sparse Bayesian learning strategy for airborne radar. IET Signal Process. 2017, 11, 544–553. [Google Scholar] [CrossRef]
- Sun, Y.Z.; Yang, X.P.; Long, T.; Sarkar, T.K. Robust Sparse Bayesian Learning STAP Method for Discrete Interference Suppression in Nonhomogeneous Clutter. In Proceedings of the IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017. [Google Scholar]
- Li, Z.; Wang, T. Sparse Bayesian learning-based robust STAP algorithm. Syst. Eng. Electron. 2023, 45, 3032–3040. [Google Scholar]
- Nickel, U. Performance analysis of space-time-adaptive monopulse. Signal Process. 2004, 84, 1561–1579. [Google Scholar] [CrossRef]
- Lyu, Y.; Cao, F. Robust beamforming based on linear constraint minimum variance algorithm. J. Beijing Univ. Aeronaut. Astronaut. 2023, 49, 617–624. (In Chinese) [Google Scholar] [CrossRef]
- Yang, Q.F.; Fang, K.; Xie, Y.J. Research on the Relation between the Number of Measurements and Signal Sparsity in Compressed Sensing. In Proceedings of the 3rd IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 October 2018. [Google Scholar]
- Davies, M.E.; Eldar, Y.C. Rank Awareness in Joint Sparse Recovery. IEEE Trans. Inf. Theory 2012, 58, 1135–1146. [Google Scholar] [CrossRef]
- Tan, X.; Roberts, W.; Li, J.; Stoica, P. Sparse Learning via Iterative Minimization with Application to MIMO Radar Imaging. IEEE Trans. Signal Process. 2011, 59, 1088–1101. [Google Scholar] [CrossRef]
- Kim, J.M.; Lee, O.K.; Ye, J.C. Compressive MUSIC: Revisiting the Link Between Compressive Sensing and Array Signal Processing. IEEE Trans. Inf. Theory 2012, 58, 278–301. [Google Scholar] [CrossRef]
- Tropp, J.A.; Gilbert, A.C.; Strauss, M.J. Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal Process. 2006, 86, 572–588. [Google Scholar] [CrossRef]
- Tropp, J.A. Algorithms for simultaneous sparse approximation. Part II: Convex relaxation. Signal Process. 2006, 86, 589–602. [Google Scholar] [CrossRef]
- Cotter, S.F.; Rao, B.D.; Engan, K.; Kreutz-Delgado, K. Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 2005, 53, 2477–2488. [Google Scholar] [CrossRef]
- Wang, Z.-T.; Duan, K.-Q.; Xie, W.-C.; Wang, Y. A joint sparse recovery STAP method based on SA-MUSIC. Tien Tzu Hsueh Pao/Acta Electron. Sin. 2015, 43, 846–853. [Google Scholar]
- Ye, J.C.; Kim, J.M.; Bresler, Y. Improving M-SBL for Joint Sparse Recovery Using a Subspace Penalty. IEEE Trans. Signal Process. 2015, 63, 6595–6605. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, X.; Liu, Y.; Meng, H. An Overview on Sparse Recovery-based STAP. J. Radars 2014, 3, 217–228. [Google Scholar] [CrossRef]
- Zou, B.; Wang, X.; Feng, W.; Zhu, H.; Li, Y. Nonlinear Regression Based Clutter Reconstruction STAP Method. Electron. Opt. Control 2022, 29, 32–37. [Google Scholar]
- Han, S.; Fan, C.; Huang, X. A Novel STAP Based on Spectrum-Aided Reduced-Dimension Clutter Sparse Recovery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 213–217. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of array elements | 10 |
Number of pulses sent within one CPI | 10 |
Wavelength (m) | 0.3 |
Array element spacing (m) | 0.15 |
Aircraft speed (m/s) | 240 |
Aircraft altitude (m) | 3000 |
Pulse repetition frequency (HZ) | 4000 |
Signal-to-noise ratio (dB) | 0 |
Clutter-to-noise ratio (dB) | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Deng, W.; Huang, P.; Xu, W.; Tan, W. Airborne Radar Space–Time Adaptive Processing Algorithm Based on Dictionary and Clutter Power Spectrum Correction. Electronics 2024, 13, 2187. https://doi.org/10.3390/electronics13112187
Gao Z, Deng W, Huang P, Xu W, Tan W. Airborne Radar Space–Time Adaptive Processing Algorithm Based on Dictionary and Clutter Power Spectrum Correction. Electronics. 2024; 13(11):2187. https://doi.org/10.3390/electronics13112187
Chicago/Turabian StyleGao, Zhiqi, Wei Deng, Pingping Huang, Wei Xu, and Weixian Tan. 2024. "Airborne Radar Space–Time Adaptive Processing Algorithm Based on Dictionary and Clutter Power Spectrum Correction" Electronics 13, no. 11: 2187. https://doi.org/10.3390/electronics13112187
APA StyleGao, Z., Deng, W., Huang, P., Xu, W., & Tan, W. (2024). Airborne Radar Space–Time Adaptive Processing Algorithm Based on Dictionary and Clutter Power Spectrum Correction. Electronics, 13(11), 2187. https://doi.org/10.3390/electronics13112187