Real-Time Implementation of Three-Phase Z Packed U-Cell Modular Multilevel Grid-Connected Converter Using CPU and FPGA
Abstract
:1. Introduction
2. Proposed Three-Phase Z Packed U-Cell Modular Multilevel Converter
2.1. ZPUC Submodule in MMC Configuration
2.2. 9L-ZPUC-MMC for Grid-Connected Applications
2.3. Comparison between HB-SM and ZPUC-SM for MMC Configurations
3. Modeling and Control of Three-Phase ZPUC-MMC Grid-Connected Converter
3.1. ZPUC-MMC Mathematical Modeling
3.2. ZPUC-MMC Control System
4. Real-Time Simulations Using CPU and FPGA
4.1. Real-Time Simulation Requirements
4.2. Real-Time Implementation of Three-Phase ZPUC-MMC
5. Real-Time Simulation Results
5.1. Steady-State Operation
5.2. Dynamic Operation
5.3. Proposed Design Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sorto-Ventura, K.; Abarzadeh, M.; Al-Haddad, K.; Dessaint, L.A. 23-level Single DC Source Hybrid PUC (H-PUC) Converter Topology with Reduced Number of Components: Real-Time Implementation with Model Predictive Control. IEEE Open J. Ind. Electron. Soc. 2020, 1, 127–137. [Google Scholar] [CrossRef]
- Bélanger, J.; Venne, P. The What, Where and Why of Real-Time Simulation. Planet Rt 2010, 1, 25–29. [Google Scholar]
- Dekka, A.; Wu, B.; Fuentes, R.L.; Perez, M.; Zargari, N.R. Evolution of Topologies, Modeling, Control Schemes, and Applications of Modular Multilevel Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 1631–1656. [Google Scholar] [CrossRef]
- Debnath, S.; Qin, J.; Bahrani, B.; Saeedifard, M.; Barbosa, P. Operation, Control, and Applications of the Modular Multilevel Converter: A Review. IEEE Trans. Power Electron. 2015, 30, 37–53. [Google Scholar] [CrossRef]
- Perez, M.A.; Bernet, S.; Rodriguez, J.; Kouro, S.; Lizana, R. Circuit Topologies, Modeling, Control Schemes, and Applications of Modular Multilevel Converters. IEEE Trans. Power Electron. 2015, 30, 4–17. [Google Scholar] [CrossRef]
- Glinka, M.; Marquardt, R. A new AC/AC-multilevel converter family applied to a single-phase converter. In Proceedings of the Fifth International Conference on Power Electronics and Drive Systems, PEDS 2003, Singapore, 17–20 November 2003; pp. 16–23. [Google Scholar] [CrossRef]
- de Sousa, G.J.M.; Heldwein, M.L. Modular multilevel converter based unidirectional medium/high voltage drive system. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 1037–1042. [Google Scholar] [CrossRef]
- Cui, S.; Kim, S.; Jung, J.-J.; Sul, S.-K. Principle, control and comparison of modular multilevel converters (MMCs) with DC short circuit fault ride-through capability. In Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition—APEC 2014, Fort Worth, TX, USA, 16–20 March 2014; pp. 610–616. [Google Scholar] [CrossRef]
- Solas, E.; Abad, G.; Barrena, J.A.; Aurtenetxea, S.; Carcar, A.; Zajac, L. Modular Multilevel Converter With Different Submodule Concepts—Part I: Capacitor Voltage Balancing Method. IEEE Trans. Ind. Electron. 2013, 60, 4525–4535. [Google Scholar] [CrossRef]
- Dargahi, V.; Sadigh, A.K.; Abarzadeh, M.; Eskandari, S.; Corzine, K.A. A New Family of Modular Multilevel Converter Based on Modified Flying-Capacitor Multicell Converters. IEEE Trans. Power Electron. 2015, 30, 138–147. [Google Scholar] [CrossRef]
- Nami, A.; Wang, L.; Dijkhuizen, F.; Shukla, A. Five level cross connected cell for cascaded converters. In Proceedings of the 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2–6 September 2013; pp. 1–9. [Google Scholar] [CrossRef]
- Sleiman, M.; Blanchette, H.F.; Al-Haddad, K.; Gregoire, L.-A.; Kanaan, H. A new 7L-PUC multi-cells modular multilevel converter for AC-AC and AC-DC applications. In Proceedings of the 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 17–19 March 2015; pp. 2514–2519. [Google Scholar] [CrossRef]
- Arazm, S.; Al-Haddad, K. ZPUC: A New Configuration of Single DC Source for Modular Multilevel Converter Applications. IEEE Open J. Ind. Electron. Soc. 2020, 1, 97–113. [Google Scholar] [CrossRef]
- Atanalian, S.; Sebaaly, F.; Arazm, S.; Zgheib, R.; Al-Haddad, K.; Kanaan, H.Y. Three-Phase ZPUC-MMC Grid Connected Converter. In Proceedings of the IECON 2022—48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, 17–20 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Atanalian, S.; Sebaaly, F.; Zgheib, R.; Al-Haddad, K. Voltage Balancing and Energy Sorting of 17L-ZPUC-Based Modular Multilevel Converter. In Proceedings of the 2023 IEEE International Conference on Industrial Technology (ICIT), Orlando, FL, USA, 4–6 April 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Solas, E.; Abad, G.; Barrena, J.A.; Aurtenetxea, S.; Carcar, A.; Zajac, L. Modular Multilevel Converter With Different Submodule Concepts—Part II: Experimental Validation and Comparison for HVDC Application. IEEE Trans. Ind. Electron. 2013, 60, 4536–4545. [Google Scholar] [CrossRef]
- Saad, H.; Ould-Bachir, T.; Mahseredjian, J.; Dufour, C.; Dennetiere, S.; Nguefeu, S. Real-Time Simulation of MMCs Using CPU and FPGA. IEEE Trans. Power Electron. 2015, 30, 259–267. [Google Scholar] [CrossRef]
- Pang, H.; Zhang, F.; Bao, H.; Joós, G.; Wang, W.; Li, W.; Gregoire, L.A.; Zhai, X. Simulation of modular multilevel converter and DC grids on FPGA with sub-microsecond time-step. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 2673–2678. [Google Scholar] [CrossRef]
- Gregoire, L.-A.; Fortin-Blanchette, H.; Al-Haddad, K.; Li, W.; Belanger, J. Real-time simulation of modular multilevel converter on FPGA with sub-microsecond time-step. In Proceedings of the IECON 2014—40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 29 October–1 November 2014; pp. 3797–3802. [Google Scholar] [CrossRef]
- Faruque, M.O.; Strasser, T.; Lauss, G.; Jalili-Marandi, V.; Forsyth, P.; Dufour, C.; Dinavahi, V.; Monti, A.; Kotsampopoulos, P.; Martinez, J.A.; et al. Real-Time Simulation Technologies for Power Systems Design, Testing, and Analysis. IEEE Power Energy Technol. Syst. J. 2015, 2, 63–73. [Google Scholar] [CrossRef]
- Wei, Y.; Shu, D.; Xie, X.; Dinavahi, V.; Yan, Z. Real-Time Simulation of Hybrid Modular Multilevel Converters Using Shifted Phasor Models. IEEE Access 2019, 7, 2376–2386. [Google Scholar] [CrossRef]
- Arazm, S.; Vahedi, H.; Al-Haddad, K. Generalized Phase-Shift Pulse Width Modulation for Multi-Level Converters. In Proceedings of the 2018 IEEE Electrical Power and Energy Conference (EPEC), Toronto, ON, Canada, 10–11 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Hagiwara, M.; Akagi, H. Control and Experiment of Pulsewidth-Modulated Modular Multilevel Converters. IEEE Trans. Power Electron. 2009, 24, 1737–1746. [Google Scholar] [CrossRef]
- Perez, M.A.; Rodriguez, J. Generalized modeling and simulation of a modular multilevel converter. In Proceedings of the 2011 IEEE International Symposium on Industrial Electronics, Gdansk, Poland, 27–30 June 2011; pp. 1863–1868. [Google Scholar] [CrossRef]
- Darus, R.; Pou, J.; Konstantinou, G.; Ceballos, S.; Agelidis, V.G. Controllers for eliminating the ac components in the circulating current of modular multilevel converters. IET Power Electron. 2016, 9, 1–8. [Google Scholar] [CrossRef]
- Tu, Q.; Xu, Z.; Huang, H.; Zhang, J. Parameter design principle of the arm inductor in modular multilevel converter based HVDC. In Proceedings of the 2010 International Conference on Power System Technology, Hangzhou, China, 24–28 October 2010; pp. 1–6. [Google Scholar] [CrossRef]
- IEEE. IEEE Standard for Harmonic Control in Electric Power Systems; IEEE: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Geddada, N.; Ukil, A.; Yeap, Y.M. Circulating current controller in dq reference frame for MMC based HVDC system. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 3288–3293. [Google Scholar] [CrossRef]
- Bahrani, B.; Debnath, S.; Saeedifard, M. Circulating Current Suppression of the Modular Multilevel Converter in a Double-Frequency Rotating Reference Frame. IEEE Trans. Power Electron. 2016, 31, 783–792. [Google Scholar] [CrossRef]
- Tu, Q.; Xu, Z.; Xu, L. Reduced Switching-Frequency Modulation and Circulating Current Suppression for Modular Multilevel Converters. IEEE Trans. Power Deliv. 2011, 26, 2009–2017. [Google Scholar] [CrossRef]
- Matar, M.; Iravani, R. FPGA Implementation of the Power Electronic Converter Model for Real-Time Simulation of Electromagnetic Transients. IEEE Trans. Power Deliv. 2010, 25, 852–860. [Google Scholar] [CrossRef]
- Gregoire, L.-A.; Li, W.; Belanger, J.; Snider, L. Validation of a 60-Level Modular Multilevel Converter Model—Overview of Offline and Real- Time HIL Testing and Results. In Proceedings of the International Conference on Power Systems Transients (IPST2011), Delft, The Netherlands, 14–17 June 2011. [Google Scholar]
SM Type | Hardware Perspective | Control Perspective | |||
---|---|---|---|---|---|
SM | C | IGBT | Diodes | Arm Voltage Levels | Multilevel |
HB | N | 2*N | 2*N | N | NO |
U | N | N | 2*N | N | NO |
FB | N | 4*N | 4*N | N | NO |
CD | 2*N | 5*N | 7*N | 3*N | YES |
3L-NPC | 2*N | 4*N | 6*N | 3*N | YES |
3L-FC | 2*N | 4*N | 4*N | 3*N | YES |
5L-CCC | 2*N | 6*N | 6*N | 5*N | YES |
7L-PUC | 2*N | 6*N | 6*N | 7*N | YES |
5L-ZPUC | 3*N | 6*N | 6*N | 4*N+1 | YES |
States | S1 S3 S5 | Vzpuc | Vzpuc (5L) |
---|---|---|---|
1 | 1 0 0 | Vc1 + Vc2 | 4E |
2 | 1 0 1 | Vc1 + Vc2 − Vc3 | 3E |
3 | 1 1 0 | Vc1 + Vc3 | 3E |
4 | 1 1 1 | Vc1 | 2E |
5 | 0 0 0 | Vc2 | 2E |
6 | 0 0 1 | Vc2 − Vc3 | E |
7 | 0 1 0 | Vc3 | E |
8 | 0 1 1 | 0 | 0 |
Converter Parameters | HB-SM | ZPUC-SM |
---|---|---|
DC Link Voltage, Vdc, (V) | 400 | 400 |
Arm Inductance, Larm, (mH) | 1 | 1 |
Arm Resistance, Rarm, (Ω) | 0.1 | 0.1 |
Load Inductance, Lg, (mH) | 25 | 25 |
Load Resistance, Rg, (Ω) | 20 | 20 |
Carrier Frequency, fc, (Hz) | 2000 | 2000 |
Power Factor, PF | 0.9 | 0.9 |
Modulation Index, m | 0.95 | 0.95 |
Number of SM per arm, N | 8 | 1 |
Capacitors/arm | 8 | 3 |
Switches/arm | 16 | 6 |
Total number of components | 144 | 54 |
Target Parts | Values |
---|---|
FPGA | Kintex-7 FPGA, 325T, 326,000 logic cells, 840 DSP slice (Multiplier-adder). |
Computer cores | Intel Xeon E3 v5 CPU (4 core, 8 MB cache, 2.1 or 3.5 GHz), 16 GB RAM, 256 GB SSD. |
Parameters | Values |
---|---|
RMS line-to-line Voltage, Vs | 600 V |
Line frequency, f0 | 60 Hz |
DC Bus Voltage, Vdc | 2000 V |
ZPUC-SM per arm, N | 1 |
Active Power, P | 1 MW |
Grid Reactance, Resistance, Lg, Rg | 1 mH, 0.1 Ω |
Arm Inductance, Resistance, Larm, Rarm | 0.5 mH, 0.05 Ω |
Capacitors of ZPUC-SM, C1, C2, and C3 | 30 mF |
Switching Frequency, fsw | 1000 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanalian, S.; Sebaaly, F.; Zgheib, R.; AL-Haddad, K. Real-Time Implementation of Three-Phase Z Packed U-Cell Modular Multilevel Grid-Connected Converter Using CPU and FPGA. Electronics 2024, 13, 2186. https://doi.org/10.3390/electronics13112186
Atanalian S, Sebaaly F, Zgheib R, AL-Haddad K. Real-Time Implementation of Three-Phase Z Packed U-Cell Modular Multilevel Grid-Connected Converter Using CPU and FPGA. Electronics. 2024; 13(11):2186. https://doi.org/10.3390/electronics13112186
Chicago/Turabian StyleAtanalian, Sandy, Fadia Sebaaly, Rawad Zgheib, and Kamal AL-Haddad. 2024. "Real-Time Implementation of Three-Phase Z Packed U-Cell Modular Multilevel Grid-Connected Converter Using CPU and FPGA" Electronics 13, no. 11: 2186. https://doi.org/10.3390/electronics13112186
APA StyleAtanalian, S., Sebaaly, F., Zgheib, R., & AL-Haddad, K. (2024). Real-Time Implementation of Three-Phase Z Packed U-Cell Modular Multilevel Grid-Connected Converter Using CPU and FPGA. Electronics, 13(11), 2186. https://doi.org/10.3390/electronics13112186