Neural Network-Based Detection of OCC Signals in Lighting-Constrained Environments: A Museum Use Case
Abstract
:1. Introduction
2. Related Works
3. Proposed System
3.1. CNN Model Developed
3.2. Precision and Loss Function Explanation
- -
- is a binary indicator (0 or 1) if class label c is the correct classification for observation o;
- -
- is the predicted probability of observation o being of class c.
3.3. Normalization of the Confusion Matrix
3.4. Data Collection, Labelling and Preprocessing
3.5. Model Training and Testing
3.6. VLP System Based on 3D Platform in Real-Time Simulator
4. Results
4.1. CNN Evaluation
4.2. System Evaluation
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
OCC | Optical Camera Communications |
VLP | Visible Light Positioning |
CNN | Convolutional Neural Network |
SIM | Stacked Intelligent Metasurfaces |
JCAS | Joint Communication and Sensing |
JCSL | Joint Communication, Sensing, and Localization |
OFDM | Orthogonal Frequency-Division Multiplexing |
References
- Framework and Overall Objectives of the Future Development of IMT for 2030 and Beyond. International Telecommunication Union. ITU-R Working Groups-IMT Systems. WP5D Document 5/131-E. 2023. Available online: https://www.itu.int/md/R19-WP5D-230612-TD-0905/en (accessed on 4 May 2024).
- Liu, F.; Cui, Y.; Masouros, C.; Xu, J.; Han, T.X.; Eldar, Y.C.; Buzzi, S. Integrated Sensing and Communications: Toward Dual-Functional Wireless Networks for 6G and Beyond. IEEE J. Sel. Areas Commun. 2022, 40, 1728–1767. [Google Scholar] [CrossRef]
- An, J.; Yuen, C.; Guan, Y.L.; Di Renzo, M.; Debbah, M.; Poor, H.V.; Hanzo, L. Two-Dimensional Direction-of-Arrival Estimation Using Stacked Intelligent Metasurfaces. arXiv 2024, arXiv:2402.08224. [Google Scholar]
- Buhalis, D.; Foerste, M. SoCoMo marketing for travel and tourism: Empowering co-creation of value. J. Destin. Mark. Manag. 2015, 4, 151–161. [Google Scholar] [CrossRef]
- Aguiar-Castillo, L.; Guerra, V.; Rufo, J.; Rabadan, J.; Perez-Jimenez, R. Survey on optical wireless communications-based services applied to the tourism industry: Potentials and challenges. Sensors 2021, 21, 6282. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Hasan, M.K.; Shahjalal, M.; Alam, M.M.; Jang, Y.M. Experimental Demonstration of Continuous Sensor Data Monitoring Using Neural Network-Based Optical Camera Communications. IEEE Photonics J. 2020, 12, 1–11. [Google Scholar] [CrossRef]
- Schaedler, M.; Bluemm, C.; Kuschnerov, M.; Pittalà, F.; Calabrò, S.; Pachnicke, S. Deep Neural Network Equalization for Optical Short Reach Communication. Appl. Sci. 2019, 9, 4675. [Google Scholar] [CrossRef]
- Li, X.; Hassan, N.B.; Burton, A.; Ghassemlooy, Z.; Zvanovec, S.; Perez-Jimenez, R. A simplified model for the rolling shutter based camera in optical camera communications. In Proceedings of the 2019 15th International Conference on Telecommunications (ConTEL), Graz, Austria, 3–5 July 2019; pp. 1–5. [Google Scholar]
- Shahjalal, M.; Hasan, M.K.; Chowdhury, M.Z.; Jang, Y.M. Smartphone Camera-Based Optical Wireless Communication System: Requirements and Implementation Challenges. Electronics 2019, 8, 913. [Google Scholar] [CrossRef]
- Soares, M.R.; Chaudhary, N.; Eso, E.; Younus, O.I.; Nero Alves, L.; Ghassemlooy, Z. Optical Camera Communications with Convolutional Neural Network for Vehicle-toVehicle Links. In Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- An, J.; Li, H.; Ng, D.W.K.; Yuen, C. Fundamental Detection Probability vs. Achievable Rate Tradeoff in Integrated Sensing and Communication Systems. IEEE Trans. Wirel. Commun. 2023, 22, 9835–9853. [Google Scholar] [CrossRef]
- Zhu, Z.; Guo, C.; Bao, R.; Chen, M.; Saad, W.; Yang, Y. Positioning Using Visible Light Communications: A Perspective Arcs Approach. IEEE Trans. Wirel. Commun. 2023, 22, 6962–6977. [Google Scholar] [CrossRef]
- Armstrong, J.; Sekercioglu, Y.A.; Neild, A. Visible light positioning: A roadmap for international standardization. IEEE Commun. Mag. 2013, 51, 68–73. [Google Scholar] [CrossRef]
- Rabadan, J.; Guerra, V.; Rodríguez, R.; Rufo, J.; Luna-Rivera, M.; Perez-Jimenez, R. Hybrid visible light and ultrasound-based sensor for distance estimation. Sensors 2017, 17, 330. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Burbano, P.; Guerra, V.; Rabadan, J.; Jurado-Verdu, C.; Perez-Jimenez, R. Novel indoor localization system using optical camera communication. In Proceedings of the 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Budapest, Hungary, 18–20 July 2018; pp. 1–5. [Google Scholar]
- Long, Q.; Zhang, J.; Cao, L.; Wang, W. Indoor Visible Light Positioning System Based on Point Classification Using Artificial Intelligence Algorithms. Sensors 2023, 23, 5224. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Yang, R.; Li, B.; Chen, Y.; Li, H.; Wu, Y.; Safari, M.; Li, S.; Al-Dhahir, N. Optimal Power Allocation for Integrated Visible Light Positioning and Communication System With a Single LED-Lamp. IEEE Trans. Commun. 2022, 70, 6734–6747. [Google Scholar] [CrossRef]
- Chen, S.Q.; Chi, X.F.; Li, T.Y. Non-line-of-sight optical camera communication aided by a pilot. Opt. Lett. 2021, 46, 3348–3351. [Google Scholar] [CrossRef]
- Song, H.; Wen, S.; Yang, C.; Yuan, D.; Guan, W. Universal and Effective Decoding Scheme for Visible Light Positioning Based on Optical Camera Communication. Electronics 2021, 10, 1925. [Google Scholar] [CrossRef]
- Afzalan, M.; Jazizadeh, F. Indoor Positioning Based on Visible Light Communication: A Performance-based Survey of Real-world Prototypes. ACM Comput. Surv. 2019, 52, 35. [Google Scholar] [CrossRef]
- Mahmoud, A.A. Precision indoor three-dimensional visible light positioning using receiver diversity and multi-layer perceptron neural network. IET Optoelectron. 2020, 14, 440–446. [Google Scholar] [CrossRef]
- Mao, W.; Xie, H.; Tan, Z.; Liu, Z.; Liu, M. High precision indoor positioning method based on visible light communication using improved Camshift tracking algorithm. Opt. Commun. 2020, 468, 125599. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, L.; Jiang, L.; Yi, A.; Pan, Y.; Pan, W.; Luo, B. Convolutional Neural Network Equalizer for Short-reach Optical Communication Systems. In Proceedings of the Asia Communications and Photonics Conference/International Conference on Information Photonics and Optical Communications 2020 (ACP/IPOC), Beijing, China, 24–27 October 2020; Optica Publishing Group: Washington, DC, USA, 2020; p. M4A.320. [Google Scholar] [CrossRef]
- Yu, K.; He, J.; Huang, Z. Decoding scheme based on CNN for mobile optical camera communication. Appl. Opt. 2020, 59, 7109–7113. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Hossan, M.T.; Jang, Y.M. Convolutional neural networkscheme–based optical camera communication system for intelligent Internet of vehicles. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718770153. [Google Scholar] [CrossRef]
- Wild, T.; Braun, V.; Viswanathan, H. Joint Design of Communication and Sensing for Beyond 5G and 6G Systems. IEEE Access 2021, 9, 30845–30857. [Google Scholar] [CrossRef]
- Nemati, M.; Kim, Y.H.; Choi, J. Toward joint radar, communication, computation, localization, and sensing in IoT. IEEE Access 2022, 10, 11772–11788. [Google Scholar] [CrossRef]
- Singh, R.K.; Rahmani, M.H.; Weyn, M.; Berkvens, R. Joint Communication and Sensing: A Proof of Concept and Datasets for Greenhouse Monitoring Using LoRaWAN. Sensors 2022, 22, 1326. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Zhang, J.A.; Huang, X.; Guo, Y.J. Joint Communications and Sensing Employing Multi- or Single-Carrier OFDM Communication Signals: A Tutorial on Sensing Methods, Recent Progress and a Novel Design. Sensors 2022, 22, 1613. [Google Scholar] [CrossRef]
Hyperparameter | Value |
---|---|
Batch size | 32 |
Epochs | 30 and 50 |
Learning rate | 0.001 |
Loss Function | Sparse Categorical Crossentropy |
Optimizer | Adam |
Convolutional layers | 3 layers: 32, 64, 128 filters each |
Pooling layers | MaxPooling2D |
Dense layers | 1 layer with 128 neurons, 1 output layer with num_classes neurons |
Activation Function (Output Layer) | Softmax |
Data Augmentation | RandomFlip, RandomRotation |
Regularization (L2) | 0.01 applied to all convolutional and dense layers |
Dropout | 0.5 applied to the last dense layer |
Early Stopping | Patience of 3 epochs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rufo, S.; Aguiar-Castillo, L.; Rufo, J.; Perez-Jimenez, R. Neural Network-Based Detection of OCC Signals in Lighting-Constrained Environments: A Museum Use Case. Electronics 2024, 13, 1828. https://doi.org/10.3390/electronics13101828
Rufo S, Aguiar-Castillo L, Rufo J, Perez-Jimenez R. Neural Network-Based Detection of OCC Signals in Lighting-Constrained Environments: A Museum Use Case. Electronics. 2024; 13(10):1828. https://doi.org/10.3390/electronics13101828
Chicago/Turabian StyleRufo, Saray, Lidia Aguiar-Castillo, Julio Rufo, and Rafael Perez-Jimenez. 2024. "Neural Network-Based Detection of OCC Signals in Lighting-Constrained Environments: A Museum Use Case" Electronics 13, no. 10: 1828. https://doi.org/10.3390/electronics13101828
APA StyleRufo, S., Aguiar-Castillo, L., Rufo, J., & Perez-Jimenez, R. (2024). Neural Network-Based Detection of OCC Signals in Lighting-Constrained Environments: A Museum Use Case. Electronics, 13(10), 1828. https://doi.org/10.3390/electronics13101828