Underwater Image Enhancement Network Based on Dual Layers Regression
Abstract
:1. Introduction
- We propose a multi-stage progressive optimization network model, named as Dual Layers Regression Network (DLRNet). In our model, the enhancement of an underwater image is decomposed into multiple controllable processes and optimized gradually. In this way, the degraded underwater image can be enhanced stage by stage.
- We propose a fusion mechanism to integrate the features from every stage. Coupled with an attention module, shallow features are fused to continuously deepen the network’s understanding of features, which is beneficial for gradual optimization of the network.
- Under the supervision of the previous outputs, the network continuously explores more effective enhanced features on the basis of ensuring the integrity of feature information.
- The qualitative and quantitative evaluations on different datasets show that, compared with some state-of-the-art methods, our DLRNet can more effectively restore color distortion and enhance the contrast.
2. Related Work
2.1. Traditional Approaches
2.1.1. Traditional Enhancement Approaches
2.1.2. Traditional Restoration Approaches
2.2. CNN-Based Approaches
3. Proposed Method
3.1. Underwater Optical Imaging Model
3.2. Architecture
3.2.1. Dilated Convolution
3.2.2. Features Integration
3.2.3. Attention Mechanism
3.2.4. Parameters Estimation and Output
3.3. Loss Function
4. Experiments and Discussion
4.1. Datasets and Experimental Settings
4.2. Qualitative Evaluation
4.3. Quantitative Evaluation
4.4. Ablation Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Zhang, G.; Luan, K.; Yi, C.; Li, M. Image-Fused-Guided Underwater Object Detection Model Based on Improved YOLOv7. Electronics 2023, 12, 4064. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, M.; Fan, C.; Chen, X.; Li, Y.; Wang, H. Research on an Underwater Object Detection Network Based on Dual-Branch Feature Extraction. Electronics 2023, 12, 3413. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, Z.; Yang, S.; Fan, X.; Liu, R. Target Oriented Perceptual Adversarial Fusion Network for Underwater Image Enhancement. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 6584–6598. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Xu, S.; Li, X.; Yang, Y.; Xu, D.; Liu, T.; Hu, H. Underwater Image Restoration via Adaptive Color Correction and Contrast Enhancement Fusion. Remote Sens. 2023, 15, 4699. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Q.; Jiang, Q.; Ren, W.; Lam, K.; Zhang, W. Underwater Camera: Improving Visual Perception via Adaptive Dark Pixel Prior and Color Correction. Int. J. Comput. Vis. 2023, 1, 1–19. [Google Scholar] [CrossRef]
- Zhou, J.; Li, B.; Zhang, D.; Yuan, J.; Zhang, W.; Cai, Z.; Shi, J. UGIF-Net: An Efficient Fully Guided Information Flow Network for Underwater Image Enhancement. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–17. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Li, C.; Zhang, W. Multicolor Light Attenuation Modeling for Underwater Image Restoration. IEEE J. Ocean. Eng. 2023, 48, 1322–1337. [Google Scholar] [CrossRef]
- Buchsbaum, G. A Spatial Processor Model for Object Colour Perception. J. Frankl. Inst. 1980, 310, 1–26. [Google Scholar] [CrossRef]
- Pizer, S.; Johnston, R.; Ericksen, J.; Yankaskas, B.; Muller, K. Contrast-Limited Adaptive Histogram Equalization: Speed and Effectiveness. In Proceedings of the First Conference on Visualization in Biomedical Computing, Atlanta, GA, USA, 22–25 May 1990; pp. 337–345. [Google Scholar]
- Li, C.; Guo, J. Underwater Image Enhancement by Dehazing and Color Correction. J. Electron. Imaging 2015, 24, 33023. [Google Scholar] [CrossRef]
- Henke, B.; Vahl, M.; Zhou, Z. Removing Color Cast of Underwater Images through Non-Constant Color Constancy Hypothesis. In Proceedings of the 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), Trieste, Italy, 4–6 September 2013; pp. 20–24. [Google Scholar]
- Trucco, E.; Olmos-Antillon, A.T. Self-Tuning Underwater Image Restoration. IEEE J. Ocean. Eng. 2006, 31, 511–519. [Google Scholar] [CrossRef]
- Galdran, A.; Pardo, D.; Picón, A.; Alvarez-Gila, A. Automatic Red-Channel Underwater Image Restoration. J. Vis. Commun. Image Represent. 2015, 26, 132–145. [Google Scholar] [CrossRef]
- Emberton, S.; Chittka, L.; Cavallaro, A. Hierarchical Rank-based Veiling Light Estimation for Underwater Dehazing. In Proceedings of the British Machine Vision Conference (BMVC), Swansea, UK, 7–10 September 2015; pp. 125.1–125.12. [Google Scholar]
- Berman, D.; Levy, D.; Avidan, S.; Treibitz, T. Underwater Single Image Color Restoration using Haze-Lines and a New Quantitative Dataset. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2822–2837. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Han, Y.; Zhao, J. End-to-End Retinex-Based Illumination Attention Low-Light Enhancement Network for Autonomous Driving at Night. Comput. Intell. Neurosci. 2022, 2022, 4942420. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Feng, J.; Sang, J.; Kim, Y. Fusion Attention Mechanism for Foreground Detection Based on Multiscale U-Net Architecture. Comput. Intell. Neurosci. 2022, 2022, 7432615. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zheng, X.; Liu, D.; Ai, L.; Tang, P.; Wang, B.; Wang, Y. WBC Image Segmentation Based on Residual Networks and Attentional Mechanisms. Comput. Intell. Neurosci. 2022, 2022, 1610658. [Google Scholar] [CrossRef]
- Li, J.; Skinner, K.A.; Eustice, R.M.; Johnson-Roberson, M. WaterGAN: Unsupervised Generative Network to Enable Real-Time Color Correction of Monocular Underwater Images. IEEE Robot. Autom. Lett. 2017, 3, 387–394. [Google Scholar] [CrossRef]
- Liu, X.; Gao, Z.; Chen, B.M. IPMGAN: Integrating Physical Model and Generative Adversarial Network for Underwater Image Enhancement. Neurocomputing 2021, 453, 538–551. [Google Scholar] [CrossRef]
- Li, C.; Anwar, S.; Hou, J.; Cong, R.; Guo, C.; Ren, W. Underwater Image Enhancement via Medium Transmission-Guided Multi-Color Space Embedding. IEEE Trans. Image Process. 2021, 30, 4985–5000. [Google Scholar] [CrossRef]
- Fabbri, C.; Islam, M.J.; Sattar, J. Enhancing Underwater Imagery using Generative Adversarial Networks. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 7159–7165. [Google Scholar]
- Anwar, S.; Li, C.; Porikli, F. Deep Underwater Image Enhancement. arXiv 2018, arXiv:1807.03528. [Google Scholar]
- Islam, M.J.; Xia, Y.; Sattar, J. Fast Underwater Image Enhancement for Improved Visual Perception. IEEE Robot. Autom. Lett. 2020, 5, 3227–3234. [Google Scholar] [CrossRef]
- Li, C.; Guo, C.; Ren, W.; Cong, R.; Hou, J.; Kwong, S.; Tao, D. An Underwater Image Enhancement Benchmark Dataset and Beyond. IEEE Trans. Image Process. 2019, 29, 4376–4389. [Google Scholar] [CrossRef] [PubMed]
- Ancuti, C.; Ancuti, C.O.; Haber, T.; Bekaert, P. Enhancing Underwater Images and Videos by Fusion. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 81–88. [Google Scholar]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color Balance and Fusion for Underwater Image Enhancement. IEEE Trans. Image Process. 2017, 27, 379–393. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Wang, Y.; Song, W.; Sequeira, J.; Mavromatis, S. Shallow-Water Image Enhancement using Relative Global Histogram Stretching based on Adaptive Parameter Acquisition. In Proceedings of the International Conference on Multimedia Modeling, Bangkok, Thailand, 5–7 February 2018; pp. 453–465. [Google Scholar]
- Starosolski, R. New simple and efficient color space transformations for lossless image compression. J. Vis. Commun. Image Represent. 2014, 25, 1056–1063. [Google Scholar] [CrossRef]
- Wiseman, Y. Adapting the H.264 Standard to the Internet of Vehicles. Technologies 2023, 11, 103. [Google Scholar] [CrossRef]
- Zhuang, P.; Li, C.; Wu, J. Bayesian Retinex Underwater Image Enhancement. Eng. Appl. Artif. Intell. 2021, 101, 104171. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single Image Haze Removal using Dark Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [PubMed]
- Peng, Y.T.; Cosman, P.C. Underwater Image Restoration based on Image Blurriness and Light Absorption. IEEE Trans. Image Process. 2017, 26, 1579–1594. [Google Scholar] [CrossRef]
- Akkaynak, D.; Treibitz, T. A Revised Underwater Image Formation Model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6723–6732. [Google Scholar]
- Akkaynak, D.; Treibitz, T. Sea-thru: A Method for Removing Water from Underwater Images. In Proceedings of the IEEE/CVF Conference on computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 1682–1691. [Google Scholar]
- Li, C.; Anwar, S.; Porikli, F. Underwater Scene Prior Inspired Deep Underwater Image and Video Enhancement. Pattern Recognit. 2020, 98, 107038. [Google Scholar] [CrossRef]
- Yang, H.H.; Huang, K.C.; Chen, W.T. Laffnet: A Lightweight Adaptive Feature Fusion Network for Underwater Image Enhancement. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 685–692. [Google Scholar]
- Wang, Y.; Guo, J.; Gao, H.; Yue, H. UIECˆ2-Net: CNN-based Underwater Image Enhancement using Two Color Space. Signal Process. Image Commun. 2021, 96, 116250. [Google Scholar] [CrossRef]
- McGlamery, B.L. A Computer Model for Underwater Camera Systems. In Proceedings of the Ocean Optics VI, Monterey, CA, USA, 23–25 October 1979; Volume 208, pp. 221–231. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/0208/0000/A-Computer-Model-For-Underwater-Camera-Systems/10.1117/12.958279.short (accessed on 2 December 2023).
- Jaffe, J.S. Computer Modeling and the Design of Optimal Underwater Imaging Systems. IEEE J. Ocean. Eng. 1990, 15, 101–111. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Yu, F.; Koltun, V. Multi-scale Context Aggregation by Dilated Convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 694–711. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Song, W.; Wang, Y.; Huang, D.; Tjondronegoro, D. A Rapid Scene Depth Estimation Model based on Underwater Light Attenuation Prior for Underwater Image Restoration. In Proceedings of the Pacific Rim Conference on Multimedia, Hefei, China, 21–22 September 2018; pp. 678–688. [Google Scholar]
- Zhang, W.; Zhuang, P.; Sun, H.H.; Li, G.; Kwong, S.; Li, C. Underwater Image Enhancement via Minimal Color Loss and Locally Adaptive Contrast Enhancement. IEEE Trans. Image Process. 2022, 31, 3997–4010. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wang, G.; Qi, H.; Zhang, C.; Zheng, H.; Yu, Z. Underwater Image Enhancement with a Deep Residual Framework. IEEE Access 2019, 7, 94614–94629. [Google Scholar] [CrossRef]
Methods | EUVP-Dark | EUVP-Imagenet | EUVP-Scenes | UIEBD |
---|---|---|---|---|
Original | 16.10/0.82 | 16.98/0.74 | 20.93/0.82 | 17.75/0.77 |
IBLA [33] | 16.66/0.77 | 16.09/0.63 | 19.65/0.72 | 15.31/0.65 |
RGHS [28] | 15.91/0.79 | 16.51/0.71 | 18.43/0.75 | 19.72/0.84 |
ULAP [47] | 17.37/0.77 | 18.39/0.71 | 19.93/0.75 | 16.33/0.76 |
FUnIE_GAN [24] | 21.17/0.88 | 22.21/0.77 | 25.48/0.83 | 19.82/0.83 |
UResnet [49] | 20.99/0.87 | 23.07/0.81 | 26.63/0.87 | 19.31/0.83 |
UGAN [22] | 21.11/0.87 | 24.19/0.83 | 25.27/0.84 | 22.78/0.83 |
WaterNet [25] | 20.80/0.86 | 22.50/0.82 | 22.65/0.82 | 23.82/0.89 |
Ucolor [21] | 20.56/0.86 | 23.12/0.78 | 26.21/0.87 | 22.28/0.90 |
MLLE [48] | 14.28/0.59 | 15.44/0.58 | 14.98/0.63 | 18.22/0.73 |
DLRNet | 21.55/0.89 | 24.67/0.85 | 27.04/0.90 | 24.15/0.91 |
EUVP-dark | 20.92 | 21.17 | 21.55 | 21.08 |
EUVP-imagenet | 24.40 | 24.56 | 24.67 | 24.71 |
EUVP-scenes | 26.15 | 26.74 | 27.04 | 26.12 |
UIEBD | 22.74 | 23.42 | 24.15 | 23.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, H.; Xiao, Y.; Wang, Q.; Chen, X.; Han, Z.; Tang, Y. Underwater Image Enhancement Network Based on Dual Layers Regression. Electronics 2024, 13, 196. https://doi.org/10.3390/electronics13010196
Jia H, Xiao Y, Wang Q, Chen X, Han Z, Tang Y. Underwater Image Enhancement Network Based on Dual Layers Regression. Electronics. 2024; 13(1):196. https://doi.org/10.3390/electronics13010196
Chicago/Turabian StyleJia, Huidi, Yeqing Xiao, Qiang Wang, Xiai Chen, Zhi Han, and Yandong Tang. 2024. "Underwater Image Enhancement Network Based on Dual Layers Regression" Electronics 13, no. 1: 196. https://doi.org/10.3390/electronics13010196
APA StyleJia, H., Xiao, Y., Wang, Q., Chen, X., Han, Z., & Tang, Y. (2024). Underwater Image Enhancement Network Based on Dual Layers Regression. Electronics, 13(1), 196. https://doi.org/10.3390/electronics13010196