A Novel Electric Motor Fault Diagnosis by Using a Convolutional Neural Network, Normalized Thermal Images and Few-Shot Learning
Abstract
:1. Introduction
2. Fault Diagnosis Framework and Related Techniques
2.1. Pre-Processing of Temperature Images
2.2. Convolutional Neural Network (CNN)
2.3. Few-Shot Learning
2.4. Deep Learning-Based Automatic Motor Diagnosis System
3. Experimental Setup and Data Collection
3.1. Experimental Setup
3.2. Data Collection
4. Experimental Setup and Data Collection
4.1. Variations in Data Set Feature Distribution
4.2. Hyperparameter Calibration
4.3. Validation of the Detection System
4.4. Tests of Different Motors’ Fault Identification Based on Few-Shot Learning
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Glowacz, A. Fault diagnosis of single-phase induction motor based on acoustic signals. Mech. Syst. Signal Process. 2019, 117, 65–80. [Google Scholar] [CrossRef]
- Shao, S.; Yan, R.; Lu, Y.; Wang, P.; Gao, R.X. DCNN-based multi-signal induction motor fault diagnosis. IEEE Trans. Instrum. Meas. 2019, 69, 2658–2669. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Peng, D.; Yang, M.; Qin, Y. Feature-level attention-guided multitask CNN for fault diagnosis and working conditions identification of rolling bearing. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 4757–4769. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Song, X.; Liu, G.; Chen, Q.; Zhao, W.; Zhu, H. Induction motor broken rotor bar fault diagnosis based on third-order energy operator demodulated current signal. IEEE Trans. Energy Convers. 2021, 37, 1052–1059. [Google Scholar] [CrossRef]
- AlShorman, O.; Alkahatni, F.; Masadeh, M.; Irfan, M.; Glowacz, A.; Althobiani, F.; Kozik, J.; Glowacz, W. Sounds and acoustic emission-based early fault diagnosis of induction motor: A review study. Adv. Mech. Eng. 2021, 13, 1687814021996915. [Google Scholar] [CrossRef]
- Zurita-Millán, D.; Delgado-Prieto, M.; Saucedo-Dorantes, J.J.; Cariño-Corrales, J.A.; Osornio-Rios, R.A.; Ortega-Redondo, J.A.; Romero-Troncoso, R.d.J. Vibration signal forecasting on rotating machinery by means of signal decomposition and neurofuzzy modeling. Shock Vib. 2016, 2016, 2683269. [Google Scholar] [CrossRef]
- Saucedo-Dorantes, J.J.; Delgado-Prieto, M.; Ortega-Redondo, J.A.; Osornio-Rios, R.A.; Romero-Troncoso, R.d.J. Multiple-fault detection methodology based on vibration and current analysis applied to bearings in induction motors and gearboxes on the kinematic chain. Shock Vib. 2016, 2016, 5467643. [Google Scholar] [CrossRef]
- Cariño-Corrales, J.A.; Saucedo-Dorantes, J.J.; Zurita-Millan, D.; Delgado-Prieto, M.; Ortega-Redondo, J.A.; Alfredo Osornio-Rios, R.; de Jesus Romero-Troncoso, R. Vibration-based adaptive novelty detection method for monitoring faults in a kinematic chain. Shock Vib. 2016, 2016, 2417856. [Google Scholar] [CrossRef]
- Yu, X.; Dong, F.; Ding, E.; Wu, S.; Fan, C. Rolling bearing fault diagnosis using modified LFDA and EMD with sensitive feature selection. IEEE Access 2017, 6, 3715–3730. [Google Scholar] [CrossRef]
- Stief, A.; Ottewill, J.R.; Orkisz, M.; Baranowski, J. Two stage data fusion of acoustic, electric and vibration signals for diagnosing faults in induction motors. Elektron. Elektrotechnika 2017, 23, 19–24. [Google Scholar] [CrossRef]
- Wang, W.-J.; Cui, L.-L.; Chen, D.-Y. Multi-scale morphology analysis of acoustic emission signal and quantitative diagnosis for bearing fault. Acta Mech. Sin. 2016, 32, 265–272. [Google Scholar] [CrossRef]
- Ali, M.Z.; Shabbir, M.N.S.K.; Liang, X.; Zhang, Y.; Hu, T. Machine learning-based fault diagnosis for single-and multi-faults in induction motors using measured stator currents and vibration signals. IEEE Trans. Ind. Appl. 2019, 55, 2378–2391. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, S.; Zhao, H.; Yang, X. A novel fault diagnosis method based on integrating empirical wavelet transform and fuzzy entropy for motor bearing. IEEE Access 2018, 6, 35042–35056. [Google Scholar] [CrossRef]
- Glowacz, A.; Tadeusiewicz, R.; Legutko, S.; Caesarendra, W.; Irfan, M.; Liu, H.; Brumercik, F.; Gutten, M.; Sulowicz, M.; Daviu, J.A.A. Fault diagnosis of angle grinders and electric impact drills using acoustic signals. Appl. Acoust. 2021, 179, 108070. [Google Scholar] [CrossRef]
- Yang, T.; Pen, H.; Wang, Z.; Chang, C.S. Feature knowledge based fault detection of induction motors through the analysis of stator current data. IEEE Trans. Instrum. Meas. 2016, 65, 549–558. [Google Scholar] [CrossRef]
- Gutten, M.; KorenciAK, D.; KucerA, M.; SeboK, M.; Opielak, M.; Zukowski, P.; Koltunowicz, T.N. Maintenance diagnostics of transformers considering the influence of short-circuit currents during operation. Eksploat. Niezawodn. 2017, 19, 459–466. [Google Scholar] [CrossRef]
- Son, J.-D.; Niu, G.; Yang, B.-S.; Hwang, D.-H.; Kang, D.-S. Development of smart sensors system for machine fault diagnosis. Expert Syst. Appl. 2009, 36, 11981–11991. [Google Scholar] [CrossRef]
- Sangeetha, P.; Hemamalini, S. Dyadic wavelet transform-based acoustic signal analysis for torque prediction of a three-phase induction motor. IET Signal Process. 2017, 11, 604–612. [Google Scholar] [CrossRef]
- Uekita, M.; Takaya, Y. Tool condition monitoring for form milling of large parts by combining spindle motor current and acoustic emission signals. Int. J. Adv. Manuf. Technol. 2017, 89, 65–75. [Google Scholar] [CrossRef]
- Singh, G.; Kumar, T.C.A.; Naikan, V. Induction motor inter turn fault detection using infrared thermographic analysis. Infrared Phys. Technol. 2016, 77, 277–282. [Google Scholar] [CrossRef]
- Lopez-Perez, D.; Antonino-Daviu, J. Application of infrared thermography to failure detection in industrial induction motors: Case stories. IEEE Trans. Ind. Appl. 2017, 53, 1901–1908. [Google Scholar] [CrossRef]
- Janssens, O.; Schulz, R.; Slavkovikj, V.; Stockman, K.; Loccufier, M.; Van de Walle, R.; Van Hoecke, S. Thermal image based fault diagnosis for rotating machinery. Infrared Phys. Technol. 2015, 73, 78–87. [Google Scholar] [CrossRef]
- Bagavathiappan, S.; Lahiri, B.B.; Saravanan, T.; Philip, J.; Jayakumar, T. Infrared thermography for condition monitoring–A review. Infrared Phys. Technol. 2013, 60, 35–55. [Google Scholar] [CrossRef]
- Tsanakas, J.A.; Ha, L.; Buerhop, C. Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges. Renew. Sust. Energ. Rev. 2016, 62, 695–709. [Google Scholar] [CrossRef]
- Guan, H.; Xiao, T.; Luo, W.; Gu, J.; He, R.; Xu, P. Automatic fault diagnosis algorithm for hot water pipes based on infrared thermal images. Build. Environ. 2022, 218, 109111. [Google Scholar] [CrossRef]
- Glowacz, A. Ventilation diagnosis of angle grinder using thermal imaging. Sensors 2021, 21, 2853. [Google Scholar] [CrossRef]
- Attallah, O.; Ibrahim, R.A.; Zakzouk, N.E. CAD system for inter-turn fault diagnosis of offshore wind turbines via multi-CNNs & feature selection. Renew. Energy 2023, 203, 870–880. [Google Scholar]
- Hu, Q.; He, Z.; Zhang, Z.; Zi, Y. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble. Mech. Syst. Signal Process. 2007, 21, 688–705. [Google Scholar] [CrossRef]
- Azamfar, M.; Singh, J.; Bravo-Imaz, I.; Lee, J. Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural network and motor current signature analysis. Mech. Syst. Signal Process. 2020, 144, 106861. [Google Scholar] [CrossRef]
- Jafari, H.; Poshtan, J.; Sadeghi, H. Application of fuzzy data fusion theory in fault diagnosis of rotating machinery. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2018, 232, 1015–1024. [Google Scholar] [CrossRef]
- Geng, Z.; Ding, N.; Han, Y. Fault diagnosis of converter based on wavelet decomposition and BP neural network. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 1273–1276. [Google Scholar]
- Sun, W.; Zhao, R.; Yan, R.; Shao, S.; Chen, X. Convolutional discriminative feature learning for induction motor fault diagnosis. IEEE Trans. Ind. Inform. 2017, 13, 1350–1359. [Google Scholar] [CrossRef]
- Chine, W.; Mellit, A.; Lughi, V.; Malek, A.; Sulligoi, G.; Pavan, A.M. A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks. Renew. Energy 2016, 90, 501–512. [Google Scholar] [CrossRef]
- Hoang, D.T.; Kang, H.J. A motor current signal-based bearing fault diagnosis using deep learning and information fusion. IEEE Trans. Instrum. Meas. 2019, 69, 3325–3333. [Google Scholar] [CrossRef]
- Lee, I. Fault diagnosis system development of induction motors using discrete wavelet transform and neural network. J. KIIT 2011, 9, 56–61. [Google Scholar]
- Huang, Y.-C.; Wu, W.-B.; Kuo, C.-C. Application of Fault Overlay Method and CNN in Infrared Image of Detecting Inter-Turn Short-Circuit in Dry-Type Transformer. Electronics 2022, 12, 181. [Google Scholar] [CrossRef]
- Kim, J.S.; Choi, K.N.; Kang, S.W. Infrared thermal image-based sustainable fault detection for electrical facilities. Sustainability 2021, 13, 557. [Google Scholar] [CrossRef]
- Nasiri, A.; Taheri-Garavand, A.; Omid, M.; Carlomagno, G.M. Intelligent fault diagnosis of cooling radiator based on deep learning analysis of infrared thermal images. Appl. Therm. Eng. 2019, 163, 114410. [Google Scholar] [CrossRef]
- Pal, N.R.; Pal, S.K. A review on image segmentation techniques. Pattern Recogn. 1993, 26, 1277–1294. [Google Scholar] [CrossRef]
- Guo, J.; Guan, J. Classification of marine plankton based on few-shot learning. Arab. J. Sci. Eng. 2021, 46, 9253–9262. [Google Scholar] [CrossRef]
- Fu, S.; Liu, B.; Liu, W.; Zou, B.; You, X.; Peng, Q.; Jing, X.-Y. Adaptive multi-scale transductive information propagation for few-shot learning. Knowl.-Based Syst. 2022, 249, 108979. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Han, T.; Liu, C.; Yang, W.; Jiang, D. Deep transfer network with joint distribution adaptation: A new intelligent fault diagnosis framework for industry application. ISA Trans. 2020, 97, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, M.; Yang, Y.; Li, Z.; Du, Q.; Chen, Y.; Li, F.; Yang, H. Heterogeneous few-shot learning for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2021, 19, 5510405. [Google Scholar] [CrossRef]
- Zhang, A.; Li, S.; Cui, Y.; Yang, W.; Dong, R.; Hu, J. Limited data rolling bearing fault diagnosis with few-shot learning. IEEE Access 2019, 7, 110895–110904. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Chao, K.-H.; Tseng, Y.-C. A motor fault diagnosis system based on cerebellar model articulation controller. IEEE Access 2019, 7, 120326–120336. [Google Scholar] [CrossRef]
- Qian, L.; Li, B.; Chen, L. CNN-Based Feature Fusion Motor Fault Diagnosis. Electronics 2022, 11, 2746. [Google Scholar] [CrossRef]
- Liang, X.; Tang, Z.; Huang, Z.; Zhang, X.; Zhang, S. Efficient hashing method using 2D-2D PCA for image copy detection. IEEE Trans. Knowl. Data Eng. 2021, 35, 3765–3778. [Google Scholar] [CrossRef]
- Obayya, M.; Maashi, M.S.; Nemri, N.; Mohsen, H.; Motwakel, A.; Osman, A.E.; Alneil, A.A.; Alsaid, M.I. Hyperparameter optimizer with deep learning-based decision-support systems for histopathological breast cancer diagnosis. Cancers 2023, 15, 885. [Google Scholar] [CrossRef]
- Ge, D.-y.; Yao, X.-f.; Xiang, W.-j.; Liu, E.-c.; Xu, Z.-b. Feature similarity measurement of cross-age face images based on a deep learning algorithm. Int. J. Biom. 2021, 13, 272–288. [Google Scholar] [CrossRef]
- Ji, Z.; Zou, X.; Huang, T.; Wu, S. Unsupervised few-shot feature learning via self-supervised training. Front. Comput. Neurosci. 2020, 14, 83. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE 2020, 109, 43–76. [Google Scholar] [CrossRef]
Motor Model | Clean Water Pump (A) | Clean Water Pump (B) | Universal Motor (C) |
---|---|---|---|
Rated power | 340 W | 370 W | 380 W |
Rated voltage | 220 V | 220 V | 220 V |
Rated current | 2 A | 3.5 A | 2.3 A |
Rated speed | 800 r/min | 920 r/min | 40,000 r/min |
Type | AC | AC | DC |
Item | Operational Parameters |
---|---|
UTi260B | −20 °C to 550 °C temperature measurement range |
Thermal resolution of 256 × 192 pixels | |
Solid object material and surface treatments exhibit emissivity ranging from approximately 0.01 to 1 | |
Operating environment of 0 °C to 50 °C | |
Thermal sensitivity < 50 mk |
Data Set | Fault Type | Train | Test | Total | ||||
---|---|---|---|---|---|---|---|---|
Health | Coil | Bearing | Fan | |||||
Motor A | Left (0° to 30°) | 180 | 180 | 180 | 180 | 1176 | 504 | 1680 |
Front | 60 | 60 | 60 | 60 | ||||
Right (0° to 30°) | 180 | 180 | 180 | 180 | ||||
Motor B | Left (0° to 30°) | 90 | 90 | 90 | 90 | 0 | 840 | 840 |
Front | 30 | 30 | 30 | 30 | ||||
Right (0° to 30°) | 90 | 90 | 90 | 90 | ||||
Motor C | Front | 100 | 100 | 100 | 45 | 255 | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.-Y.; Wong, P.-K.; Vong, C.-M.; Fei, K.; Chan, I.-N. A Novel Electric Motor Fault Diagnosis by Using a Convolutional Neural Network, Normalized Thermal Images and Few-Shot Learning. Electronics 2024, 13, 108. https://doi.org/10.3390/electronics13010108
Li Q-Y, Wong P-K, Vong C-M, Fei K, Chan I-N. A Novel Electric Motor Fault Diagnosis by Using a Convolutional Neural Network, Normalized Thermal Images and Few-Shot Learning. Electronics. 2024; 13(1):108. https://doi.org/10.3390/electronics13010108
Chicago/Turabian StyleLi, Qing-Yuan, Pak-Kin Wong, Chi-Man Vong, Kai Fei, and In-Neng Chan. 2024. "A Novel Electric Motor Fault Diagnosis by Using a Convolutional Neural Network, Normalized Thermal Images and Few-Shot Learning" Electronics 13, no. 1: 108. https://doi.org/10.3390/electronics13010108