Optimized Polarization Encoder with High Extinction Ratio for Quantum Key Distribution System
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.-B. Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography. Phys. Rev. Lett. 2005, 94, 230503. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, H.; Shao, Y.; Pi, Y.; Li, Y.; Liu, B.; Huang, W.; Xu, B. Experimental demonstration of high-rate discrete-modulated continuous-variable quantum key distribution system. Opt. Lett. 2022, 47, 3307. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-B.; Zhang, Q.; Bao, X.-H.; Schmiedmayer, J.; Pan, J.-W. Deterministic and efficient quantum cryptography based on Bell’s theorem. Phys. Rev. A 2006, 73, 050302. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G. Quantum cryptography. Theor. Comput. Sci. 2014, 560, 7. [Google Scholar] [CrossRef]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661. [Google Scholar] [CrossRef]
- Tittel, W.; Brendel, J.; Zbinden, H.; Gisin, N. Quantum cryptography using entangled photons in energy-time Bell states. Phys. Rev. Lett. 2000, 84, 4737. [Google Scholar] [CrossRef]
- Ralph, T.C. Continuous variable quantum cryptography. Phys. Rev. A 1999, 61, 010303. [Google Scholar] [CrossRef]
- Huang, P.; Wang, T.; Chen, R.; Wang, P.; Zhou, Y.; Zeng, G. Experimental continuous-variable quantum key distribution using a thermal source. New J. Phys. 2021, 23, 113028. [Google Scholar] [CrossRef]
- Ralph, T.C. Security of continuous-variable quantum cryptography. Phys. Rev. A 2000, 62, 062306. [Google Scholar] [CrossRef]
- Yin, H.-L.; Chen, T.-Y.; Yu, Z.-W.; Liu, H.; You, L.-X.; Zhou, Y.-H.; Chen, S.-Y.; Mao, Y.; Huang, M.-Q.; Zhang, W.-J.; et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 2016, 117, 190501. [Google Scholar] [CrossRef]
- Boaron, A.; Boso, G.; Rusca, D.; Vulliez, C.; Autebert, C.; Caloz, M.; Perrenoud, M.; Gras, G.; Bussières, F.; Li, M.-J.; et al. Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 2018, 121, 190502. [Google Scholar] [CrossRef]
- Yuan, Z.; Plews, A.; Takahashi, R.; Doi, K.; Tam, W.; Sharpe, A.W.; Dixon, A.R.; Lavelle, E.; Dynes, J.F.; Murakami, A.; et al. 10-Mb/s Quantum Key Distribution. J. Light. Technol. 2018, 36, 3427. [Google Scholar] [CrossRef]
- Wang, S.; Chen, W.; Guo, J.-F.; Yin, Z.-Q.; Li, H.-W.; Zhou, Z.; Guo, G.-C.; Han, Z.-F. 2 GHz clock quantum key distribution over 260 km of standard telecom fiber. Opt. Lett. 2012, 37, 1008. [Google Scholar] [CrossRef]
- Zhu, M.; Hu, M.; Guo, B. Free-Space QKD with Modulating Retroreflectors Based on the B92 Protocol. Entropy 2022, 24, 204. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Hu, M.; Guo, B. Multi-User Measurement-Device-Independent Quantum Key Distribution Based on GHZ Entangled State. Entropy 2022, 24, 841. [Google Scholar] [CrossRef]
- Hu, C.-Q.; Yan, Z.-Q.; Gao, J.; Jiao, Z.-Q.; Li, Z.-M.; Shen, W.-G.; Chen, Y.; Ren, R.-J.; Qiao, L.-F.; Yang, A.-L.; et al. Transmission of photonic polarization states through 55-m water: Towards air-to-sea quantum communication. Photonics Res. 2019, 7, A40. [Google Scholar] [CrossRef]
- Hughes, R.J.; Nordholt, J.E.; Derkacs, D.; Peterson, C.G. Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 2002, 1, 43. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, P.; Wang, P.; Wei, S.; Zeng, G. Experimental free-space continuous-variable quantum key distribution with thermal source. Opt. Lett. 2023, 48, 1184. [Google Scholar] [CrossRef]
- Bacco, D.; Canale, M.; Laurenti, N.; Vallone, G.; Villoresi, P. Experimental quantum key distribution with finite-key security analysis for noisy channels. Nat. Commun. 2013, 4, 1. [Google Scholar] [CrossRef]
- Vest, G.; Rau, M.; Fuchs, L.; Corrielli, G.; Weier, H.; Nauerth, S.; Crespi, A.; Osellame, R.; Weinfurter, H. Design and Evaluation of a Handheld Quantum Key Distribution Sender module. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 131. [Google Scholar] [CrossRef]
- Nauerth, S.; Fürst, M.; Schmitt-Manderbach, T.; Weier, H.; Weinfurter, H. Information leakage via side channels in freespace BB84 quantum cryptography. New J. Phys. 2009, 11, 065001. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Jeong, Y.-C.; Kim, Y.-H. Implementation of polarization-coded free-space BB84 quantum key distribution. Laser Phys. 2008, 18, 810. [Google Scholar] [CrossRef]
- Grünenfelder, F.; Boaron, A.; Rusca, D.; Martin, A.; Zbinden, H. Simple and high-speed polarization-based QKD. Appl. Phys. Lett. 2018, 112, 051108. [Google Scholar] [CrossRef]
- Jofre, M.; Gardelein, A.; Anzolin, G.; Molina-Terriza, G.; Torres, J.P.; Mitchell, M.W.; Pruneri, V. 100 MHz amplitude and polarization modulated optical source for free-space quantum key distribution at 850 nm. J. Light. Technol. 2010, 28, 2572–2578. [Google Scholar] [CrossRef]
- Yan, Z.; Meyer-Scott, E.; Bourgoin, J.-P.; Higgins, B.L.; Gigov, N.; MacDonald, A.; Hubel, H.; Jennewein, T. Novel High-Speed Polarization Source for Decoy-State BB84 Quantum Key Distribution Over Free Space and Satellite Links. J. Light. Technol. 2013, 31, 1399. [Google Scholar] [CrossRef]
- Pugh, C.J.; Kaiser, S.; Bourgoin, J.-P.; Jin, J.; Sultana, N.; Agne, S.; Anisimova, E.; Makarov, V.; Choi, E.; Higgins, B.L.; et al. Airborne demonstration of a quantum key distribution receiver payload. Quantum Sci. Technol. 2017, 2, 024009. [Google Scholar] [CrossRef]
- Liu, X.; Liao, C.; Mi, J.; Wang, J.; Liu, S. Intrinsically stable phase-modulated polarization encoding system for quantum key distribution. Phys. Lett. A 2008, 373, 54. [Google Scholar] [CrossRef]
- Avesani, M.; Agnesi, C.; Stanco, A.; Vallone, G.; Villoresi, P. Stable, low-error, and calibration-free polarization encoder for free-space quantum communication. Opt. Lett. 2020, 45, 4706–4709. [Google Scholar] [CrossRef]
- Agnesi, C.; Avesani, M.; Stanco, A.; Villoresi, P.; Vallone, G. All-fiber self-compensating polarization encoder for quantum key distribution. Opt. Lett. 2019, 44, 2398. [Google Scholar] [CrossRef]
- Li, Y.-P.; Chen, W.; Wang, F.-X.; Yin, Z.-Q.; Zhang, L.; Liu, H.; Wang, S.; He, D.-Y.; Zhou, Z. Guo, G.-C.; et al. Experimental realization of a reference-frame-independent decoy BB84 quantum key distribution based on Sagnac interferometer. Opt. Lett. 2019, 44, 4523. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.-H.; Xie, H.-B.; Li, Z.-P.; Jiang, X.; Cai, W.-Q.; Ren, J.-G.; Yin, J.; Liao, S.-K.; Peng, C.-Z. High-speed robust polarization modulation for quantum key distribution. Opt. Lett. 2019, 44, 5262. [Google Scholar] [CrossRef]
- Ma, D.; Liu, X.; Huang, C.; Chen, H.; Lin, H.; Wei, K. Simple quantum key distribution using a stable transmitter-receiver scheme. Opt. Lett. 2021, 46, 2152. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Qi, B.; Zhao, Y.; Lo, H.-K. Practical decoy state for quantum key distribution. Phys. Rev. A 2005, 72, 0102326. [Google Scholar] [CrossRef]
- Ding, Y.-Y.; Chen, W.; Chen, H.; Wang, C.; Wang, S.; Yin, Z.-Q.; Guo, G.-C.; Han, Z.-F. Polarization-basis tracking scheme for quantum key distribution using revealed sifted key bits. Opt. Lett. 2017, 42, 1023. [Google Scholar] [CrossRef]
- Peng, C.-Z.; Zhang, J.; Yang, D.; Gao, W.-B.; Ma, H.-X.; Yin, H.; Zeng, H.-P.; Yang, T.; Wang, X.-B.; Pan, J.-W. Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 2007, 98, 010505. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Zhang, Q.; Xie, H.; Guo, B. Optimized Polarization Encoder with High Extinction Ratio for Quantum Key Distribution System. Electronics 2023, 12, 1859. https://doi.org/10.3390/electronics12081859
Wang P, Zhang Q, Xie H, Guo B. Optimized Polarization Encoder with High Extinction Ratio for Quantum Key Distribution System. Electronics. 2023; 12(8):1859. https://doi.org/10.3390/electronics12081859
Chicago/Turabian StyleWang, Pengcheng, Qianqian Zhang, Huanwen Xie, and Banghong Guo. 2023. "Optimized Polarization Encoder with High Extinction Ratio for Quantum Key Distribution System" Electronics 12, no. 8: 1859. https://doi.org/10.3390/electronics12081859
APA StyleWang, P., Zhang, Q., Xie, H., & Guo, B. (2023). Optimized Polarization Encoder with High Extinction Ratio for Quantum Key Distribution System. Electronics, 12(8), 1859. https://doi.org/10.3390/electronics12081859