Substrate Integrated Waveguide Based Cavity-Backed Circularly-Polarized Antenna for Satellite Communication
Abstract
1. Introduction
2. Antenna Structure and Design Principles
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akbar, P.R.; Tetuko, S.J.; Kuze, H. A novel circularly polarized synthetic aperture radar (CP-SAR) system onboard a spaceborne platform. Int. J. Remote Sens. 2010, 31, 1053–1060. [Google Scholar] [CrossRef]
- Latif, S.; Shafai, L. Hybrid perturbation scheme for wide angle circular polarisation of stacked square-ring microstrip antennas. Electron. Lett. 2007, 43, 1065–1066. [Google Scholar] [CrossRef]
- Qiu, L.; Zhu, L.; Xu, Y. Wideband Low-Profile Circularly Polarized Patch Antenna Using 90° Modified Schiffman Phase Shifter and Meandering Microstrip Feed. IEEE Trans. Antennas Propag. 2020, 68, 5680–5685. [Google Scholar] [CrossRef]
- Zhuang, J.; Zhang, Y.; Hong, W.; Hao, Z. A broadband circularly polarized patch antenna with improved axial ratio. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1180–1183. [Google Scholar] [CrossRef]
- Huang, J. A technique for an array to generate circular polarization with linearly polarized elements. IEEE Trans. Antennas Propag. 1986, 34, 1113–1124. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory, 3rd ed.; Wiley: New York, NY, USA, 2005; pp. 984–986. [Google Scholar]
- Bang, J.; Choi, S.; Noh, J.; Lim, J.; Kim, D.; Kim, D.; Ahn, B. A New Dual Circularly Polarized Feed Employing a Dielectric Cylinder-Loaded Circular Waveguide Open End Fed by Crossed Dipoles. Int. J. Antennas Propag. 2016, 5, 1–7. [Google Scholar] [CrossRef]
- Chen, R.-S.; Huang, G.-L.; Wong, S.-W.; Al-Nuaimi, M.K.T.; Tam, K.-W.; Choi, W.-W. Bandwidth-enhanced circularly-polarized slot antenna and array under two pairs of degenerate modes in a single resonant cavity. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 288–292. [Google Scholar] [CrossRef]
- Xu, F.; Ke, W. Guided-Wave and Leakage Characteristics of Substrate Integrated. IEEE Trans. Microw. Theory Tech. 2007, 53, 66–73. [Google Scholar]
- Alibakhshikenari, M.; Virdee, B.S.; Salekzamankhani, S.; Aïssa, S.; See, C.; Soin, N.; Fishlock, S.; Althuwayb, A.; Abd-Alhameed, R.; Huynen, I.; et al. High-isolation antenna array using SIW and realized with a graphene layer for sub-terahertz wireless applications. Sci. Rep. 2021, 11, 10218. [Google Scholar] [CrossRef] [PubMed]
- Choubey, P.N.; Hong, W. A wideband dual-mode SIW cavity-backed triangular-complimentary-split-ring-slot (TCSRS) antenna. IEEE Trans. Antennas Propag. 2016, 64, 2541–2545. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, R.A.; Falcone, F.; Limiti, E. High-Isolation Leaky-Wave Array Antenna Based on CRLH-Metamaterial Implemented on SIW with ±30° Frequency Beam-Scanning Capability at Millimetre-Waves. Electronics 2019, 8, 642. [Google Scholar] [CrossRef]
- Wang, W.; Jin, H.; Yu, W.; Zhang, X.H.; Wu, F.; Chin, K.; Luo, G. A single-layer dual circularly polarized SIW cavity backed patch filtenna with wide axial ratio bandwidth. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 908–912. [Google Scholar]
- Zhu, C.; Xu, G.; Ren, A.; Wang, W.; Huang, Z.; Wu, X. A Compact Dual-Band Dual-Circularly Polarized SIW Cavity-Backed Antenna Array for Millimeter Wave Applications. IEEE Antennas Wirel. Propag Lett. 2022, 21, 1572–1576. [Google Scholar] [CrossRef]
- Wang, X.C.; Xia, Y.J.; Yang, J.H.; Lu, W.Z. Wideband High-Gain Circularly Polarized Substrate Integrated Cavity Antenna Array for Millimeter-Wave Applications. IEEE Trans. Antennas Propag. 2023, 71, 1041–1046. [Google Scholar] [CrossRef]
- Hu, J.; Hao, Z.C.; Miao, Z.W. Design and implementation of a planar polarization-reconfigurable antenna. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1557–1560. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, G.; Ding, D.; Wu, J.; Wang, W.; Huang, Z.; Wu, X. Low profile wideband millimeter wave circularly polarized antenna with hexagonal parasitic patches. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1651–1655. [Google Scholar] [CrossRef]
- Guo, Z.-J.; Hao, Z.-C.; Yin, H.-Y.; Sun, D.-M.; Luo, G.Q. Planar shared-aperture array antenna with a high isolation for millimeter-wave low Earth orbit satellite communication system. IEEE Trans. Antennas Propag. 2021, 69, 7582–7592. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering, 4th ed.; Wiley: New York, NY, USA, 2011; pp. 284–288. [Google Scholar]
- Balanis, C.A. Antenna Theory, 3rd ed.; Wiley: New York, NY, USA, 2005; pp. 843–852. [Google Scholar]
- RT/duroid® 5870/5880 High Frequency Laminates. Rogers Corporation, Printed in U.S.A., 2022; [Revised 1603 080822 Publication #92-101]. Available online: https://rogerscorp.com/-/media/project/rogerscorp/documents/advanced-electronics-solutions/english/data-sheets/rt-duroid-5870---5880-data-sheet.pdf/ (accessed on 1 January 2022).
- Toh, B.Y.; Cahill, R.; Fusco, V.F. Understanding and measuring circular polarization. IEEE Trans. Educ. 2003, 46, 313–318. [Google Scholar]
- Zhang, T.; Zhang, Y.; Hong, W.; Wu, K. Triangular ring antennas for dual-frequency dual-polarization or circular-polarization operations. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 971–974. [Google Scholar] [CrossRef]
Via Diameter | Via Separation | |||||
---|---|---|---|---|---|---|
4.72 | 5.6 | 3.7 | 93°44″ | 17° | 0.3 | 0.5 |
Reference | Frequency (GHz) | Antenna Size mm | Impedance BW % | AR BW % | Peak Gain dBi | Number of Substrate Layers |
---|---|---|---|---|---|---|
[14] | Dual-Band 28, 38 | SIW Cavity Size at 28 GHz 0.66 × 0.63 | 7.3, 7.5 | 2.8, 2.6 | 8, 7.9 | 3 |
[15] | 29 | SIW Cavity Size 0.92 × 0.92 | 24.37 | 26.14 | 10.53 | 2 |
[16] | 8.15 | No Given Data But Large | 6 | 3 | 6.16 | 1 |
[17] | 32 | SIW Cavity Size 0.94 × 0.94 | 27.1 | 16.3 | 9 | 2 |
This Work | 34 | 0.59 × 0.67 | 9.5 | 2.3 | 8.5 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choubey, P.N.; Zhang, X.; He, T.; Hao, N.; Xu, K. Substrate Integrated Waveguide Based Cavity-Backed Circularly-Polarized Antenna for Satellite Communication. Electronics 2023, 12, 1669. https://doi.org/10.3390/electronics12071669
Choubey PN, Zhang X, He T, Hao N, Xu K. Substrate Integrated Waveguide Based Cavity-Backed Circularly-Polarized Antenna for Satellite Communication. Electronics. 2023; 12(7):1669. https://doi.org/10.3390/electronics12071669
Chicago/Turabian StyleChoubey, Prem Narayan, Xuewei Zhang, Tong He, Nan Hao, and Kuiwen Xu. 2023. "Substrate Integrated Waveguide Based Cavity-Backed Circularly-Polarized Antenna for Satellite Communication" Electronics 12, no. 7: 1669. https://doi.org/10.3390/electronics12071669
APA StyleChoubey, P. N., Zhang, X., He, T., Hao, N., & Xu, K. (2023). Substrate Integrated Waveguide Based Cavity-Backed Circularly-Polarized Antenna for Satellite Communication. Electronics, 12(7), 1669. https://doi.org/10.3390/electronics12071669