The Benefits of Combining Mixed Virtual Reality Exergaming with Occupational Therapy for Upper Extremity Dexterity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Concept and Design
2.2. Outcomes
2.3. Participants
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. The Benefits of the VR Program Designed
4.2. The Potential Beneficiaries of the VR Program Designed
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Da Silva, A.M.; Willmore, L.J. Posttraumatic epilepsy. Handb. Clin. Neurol. 2012, 108, 585–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherrington, C.; Tiedemann, A. Physiotherapy in the prevention of falls in older people. J. Physiother. 2015, 61, 54–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashburn, A.; Pickering, R.; McIntosh, E.; Hulbert, S.; Rochester, L.; Roberts, H.C.; Nieuwboer, A.; Kunkel, D.; Goodwin, A.V.; Lamb, S.E.; et al. Exercise- and strategy-based physiotherapy-delivered intervention for preventing repeat falls in people with Parkinson’s: The PDSAFE RCT. Health Technol. Assess. 2019, 23, 1–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, M.J.; Winkelmann, Z.K.; Powden, C.J.; Games, K.E. Proprioceptive Training for the Prevention of Ankle Sprains: An Evidence-Based Review. J. Athl. Train. 2017, 52, 1065–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Kampen, M.; Devoogdt, N.; De Groef, A.; Gielen, A.; Geraerts, I. The efficacy of physiotherapy for the prevention and treatment of prenatal symptoms: A systematic review. Int. Urogynecol. J. 2015, 26, 1575–1586. [Google Scholar] [CrossRef]
- Lannigan, E.G.; Noyes, S. Occupational Therapy Interventions for Adults Living with Serious Mental Illness. Am. J. Occup. Ther. 2019, 73, 7305395010p1–7305395010p5. [Google Scholar] [CrossRef] [Green Version]
- Larsson-Lund, M.; Nyman, A. Participation and occupation in occupational therapy models of practice: A discussion of possibilities and challenges. Scand. J. Occup. Ther. 2017, 24, 393–397. [Google Scholar] [CrossRef]
- Siripurapu, S.; Darimireddy, N.K.; Chehri, A.B.S.; AV, P. Technological Advancements and Elucidation Gadgets for Healthcare Applications: An Exhaustive Methodological Review-Part-II (Robotics, Drones, 3D-Printing, Internet of Things, Virtual/Augmented and Mixed Reality). Electronics 2023, 12, 548. [Google Scholar] [CrossRef]
- Cho, Y.; Park, K.S. Designing Immersive Virtual Reality Simulation for Environmental Science Education. Electronics 2023, 12, 315. [Google Scholar] [CrossRef]
- Zaharuddin, F.A.; Ibrahim, N.; Yusof, A.M. A Conceptual Framework for Designing Virtual Environments for Stress Therapy. Appl. Sci. 2022, 12, 9973. [Google Scholar] [CrossRef]
- Kim, D.; Kim, Y.; Jo, D. Exploring the Effect of Virtual Environments on Passive Haptic Perception. Appl. Sci. 2023, 13, 299. [Google Scholar] [CrossRef]
- Kuhail, M.A.; ElSayary, A.; Farooq, S.; Alghamdi, A. Exploring Immersive Learning Experiences: A Survey. Informatics 2022, 9, 75. [Google Scholar] [CrossRef]
- Rizzo, A.; Requejo, P.; Winstein, C.J.; Lange, B.; Ragusa, G.; Merians, A.; Patton, J.; Banerjee, P.; Aisen, M. Virtual reality applications for addressing the needs of those aging with disability. Stud. Health Technol. Inform. 2011, 163, 510–516. [Google Scholar]
- Zhang, S. Virtual Exercise Architecture for People with Lower Body Disabilities Using Virtual Reality Technologies. Ph.D. Thesis, University of Illinois at Chicago, Chicago, IL, USA, 2012. [Google Scholar]
- Karamians, R.; Proffitt, R.; Kline, D.; Gauthier, L.V. Effectiveness of Virtual Reality- and Gaming-Based Interventions for Upper Extremity Rehabilitation Poststroke: A Meta-analysis. Arch. Phys. Med. Rehabil. 2020, 101, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Prasertsakul, T.; Kaimuk, P.; Chinjenpradit, W.; Limroongreungrat, W.; Charoensuk, W. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: A randomized preliminary study. Biomed. Eng. Online 2018, 17, 124. [Google Scholar] [CrossRef] [Green Version]
- Syed-Abdul, S.; Malwade, S.; Nursetyo, A.A.; Sood, M.; Bhatia, M.; Barsasella, D.; Liu, M.F.; Chang, C.-C.; Srinivasan, K.; M, R.; et al. Virtual reality among the elderly: A usefulness and acceptance study from Taiwan. BMC Geriatr. 2019, 19, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamblin, G.; Thiberville, G.; Druette, L.; Moret, S.; Couraud, S.; Martin, X.; Dubernard, G.; Chene, G. Virtual reality simulation to enhance laparoscopic salpingectomy skills. J. Gynecol. Obstet. Hum. Reprod. 2020, 49, 101685. [Google Scholar] [CrossRef] [PubMed]
- Mihaiu, C.C.A.; Dascalu, A.; Calin, A.M. Proceedings of the 31st International BCS Human Computer in-teraction Conference, British, UK, 3–6 July 2017; pp. 1–3.
- Villamarín, J.D.G.; Villamarín, D.E.G.; Rodas, C.F.R.; Prieto, J.L. Techniques and methods for monitoring the evolution of upper limb fine motor skills: Literature review. Ing. Solidar. 2019, 15, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Kathleen, L.; Mary, B. Validity of the Jebsen-Taylor Hand Function Test in Predicting Activities of Daily Living. BRIEF 1989, 9, 316–318. [Google Scholar]
- Sığırtmaç, I.C.; Öksüz, Ç. Investigation of reliability, validity, and cutoff value of the Jebsen-Taylor Hand Function Test. J. Hand Ther. 2021, 34, 396–403. [Google Scholar] [CrossRef]
- Takla, M.; Mahmoud, E.; El-Latif, N. Jebsen Taylor Hand Function test: Gender, dominance, and age differences in healthy Egyptian population. Bull. Fac. Phys. Ther. 2018, 23, 85–93. [Google Scholar] [CrossRef]
- Grice, K.O.; Vogel, K.A.; Le, V.; Mitchell, A.; Muniz, S.; Vollmer, M.A. Adult Norms for a Commercially Available Nine Hole Peg Test for Finger Dexterity. Am. J. Occup. Ther. 2003, 57, 570–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Earhart, G.M.; Cavanaugh, J.T.; Ellis, T.; Ford, M.P.; Foreman, K.B.; Dibble, L. The 9-hole PEG test of upper extremity function: Average values, test-retest reliability, and factors contributing to performance in people with Parkinson disease. J. Neurol. Phys. Ther. 2011, 35, 157–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, C.S.; Almeida, C.S.; Freitas, L.C.; Santana, R.; Fernandes, G.; Junior, P.R.F.; Moura, R.C.F. Use of the Box and Block Test for the evaluation of manual dexterity in individuals with central nervous system disorders: A systematic review. MTPRehab J. 2016, 14, 436. [Google Scholar] [CrossRef] [Green Version]
- Mathiowetz, V.; Volland, G.; Kashman, N.; Weber, K. Adult Norms for the Box and Block Test of Manual Dexterity. Am. J. Occup. Ther. 1985, 39, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.M.; Baker, T.; Dingle, A.; Hansmeier, T.; Jimenez, M.; Lopez, S.; Marks, D.; Safford, D.; Sternberg, A.; Turner, J.; et al. Early Development and Reliability of the Timed Functional Arm and Shoulder Test. J. Orthop. Sport. Phys. Ther. 2017, 47, 420–431. [Google Scholar] [CrossRef]
- Nazari, G.; Lu, S.; MacDermid, J.C.; Azizi, A.; Stokes, N.; Hiller, S.; Kim, A.; Akhavan, K. Psychometric Properties of Per-formance-Based Functional Tests in Patients with Shoulder Pathologies: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 2020, 101, 1053–1063. [Google Scholar] [CrossRef]
- Greenhouse, S.W.; Geisser, S. On methods in the analysis of profile data. Psychometrika 1959, 24, 95–112. [Google Scholar] [CrossRef]
- Bakeman, R. Recommended effect size statistics for repeated measures designs. Behav. Res. Methods 2005, 37, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Jain, W. Regression Analysis Modeling & Forecasting; Graceway Publishing C Graceway Pub.: Flushing, NY, USA, 2003. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Psychology Press: New York, NY, USA, 1988. [Google Scholar]
- Kang, H. Sample size determination and power analysis using the G*Power software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Jonsdottir, J.; Perini, G.; Ascolese, A.; Bowman, T.; Montesano, A.; Lawo, M.; Bertoni, R. Unilateral arm rehabilitation for persons with multiple sclerosis using serious games in a virtual reality approach: Bilateral treatment effect? Mult. Scler. Relat. Disord. 2019, 35, 76–82. [Google Scholar] [CrossRef]
- Schuster-Amft, C.; Eng, K.; Suica, Z.; Thaler, I.; Signer, S.; Lehmann, I.; Schmid, L.; McCaskey, M.A.; Hawkins, M.; Verra, M.; et al. Effect of a four-week virtual reality-based training versus conventional therapy on upper limb motor function after stroke: A multicenter parallel group randomized trial. PLoS ONE 2018, 13, e0204455. [Google Scholar] [CrossRef] [Green Version]
- Miclaus, R.; Roman, N.; Caloian, S.; Mitoiu, B.; Suciu, O.; Onofrei, R.R.; Pavel, E.; Neculau, A. Non-Immersive Virtual Reality for Post-Stroke Upper Extremity Rehabilitation: A Small Cohort Randomized Trial. Brain Sci. 2020, 10, 655. [Google Scholar] [CrossRef]
- Ona, E.D.; Cuesta-Gomez, A.; Garcia, J.A.; Raffe, W.; Sanchez-Herrera, P.; Cano-De-La-Cuerda, R.; Jardon, A. Evaluating A VR-based Box and Blocks Test for Automatic Assessment of Manual Dexterity: A Preliminary Study in Parkinson’s Disease. In Proceedings of the 2019 IEEE 7th International Conference on Serious Games and Applications for Health (SeGAH), Kyoto, Japan, 5–7 August 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Waliño-Paniagua, C.N.; Gómez-Calero, C.; Jiménez-Trujillo, M.I.; Aguirre-Tejedor, L.; Bermejo-Franco, A.; Ortiz-Gutiérrez, R.M.; Cano-De-La-Cuerda, R. Effects of a Game-Based Virtual Reality Video Capture Training Program Plus Occupational Therapy on Manual Dexterity in Patients with Multiple Sclerosis: A Randomized Controlled Trial. J. Health Eng. 2019, 2019, 9780587. [Google Scholar] [CrossRef] [Green Version]
- Robert, P.; Benoit, M.; Rachid, G.; Pierre-David, P.; Emmanuelle, C.; Valeria, M.; Chaurasia, G.; George, D. Is it possible to use highly realistic virtual reality in the elderly? A feasibility study with image-based rendering. Neuropsychiatr. Dis. Treat. 2015, 11, 557–563. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Nieto, D.; Castaño-Castaño, S.; Navarro-Martos, R.; Obrero-Gaitán, E.; Cortés-Pérez, I.; Nieto-Escamez, F. An Intervention on Anxiety Symptoms in Moderate Alzheimer’s Disease through Virtual Reality: A Feasibility Study and Lessons Learned. Int. J. Environ. Res. Public Health 2023, 20, 2727. [Google Scholar] [CrossRef] [PubMed]
- Matsangidou, M.; Solomou, T.; Frangoudes, F.; Ioannou, K.; Theofanous, P.; Papayianni, E.; Pattichis, C.S. Affective Out-World Experience via Virtual Reality for Older Adults Living with Mild Cognitive Impairments or Mild Dementia. Int. J. Environ. Res. Public Health 2023, 20, 2919. [Google Scholar] [CrossRef]
- Staiano, A.E.; Marker, A.M.; Beyl, R.A.; Hsia, D.S.; Katzmarzyk, P.T.; Newton, R.L. A randomized controlled trial of dance exergaming for exercise training in overweight and obese adolescent girls. Pediatr. Obes. 2017, 12, 120–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dermody, G.; Whitehead, L.; Wilson, G.; Glass, C. The Role of Virtual Reality in Improving Health Outcomes for Community-Dwelling Older Adults: Systematic Review. J. Med. Internet Res. 2020, 22, e17331. [Google Scholar] [CrossRef] [PubMed]
- Röglin, L.; Stoll, O.; Ketelhut, K.; Martin-Niedecken, A.L.; Ketelhut, S. Evaluating Changes in Perceived Enjoyment throughout a 12-Week School-Based Exergaming Intervention. Children 2023, 10, 144. [Google Scholar] [CrossRef]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017, 2018, CD008349. [Google Scholar] [CrossRef] [Green Version]
- Laver, K.E.; George, S.; Thomas, S.; Deutsch, J.E.; Crotty, M. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2011, 9, CD008349. [Google Scholar] [CrossRef] [Green Version]
- Mang, C.; Campbell, K.L.; Ross, C.; Boyd, L.A. Promoting Neuroplasticity for Motor Rehabilitation After Stroke: Considering the Effects of Aerobic Exercise and Genetic Variation on Brain-Derived Neurotrophic Factor. Phys. Ther. 2013, 93, 1707–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihai, E.E.; Popescu, M.N.; Beiu, C.; Gheorghe, L.; Berteanu, M. Tele-Rehabilitation Strategies for a Patient with Post-stroke Spasticity: A Powerful Tool Amid the COVID-19 Pandemic. Cureus 2021, 13, e19201. [Google Scholar] [CrossRef] [PubMed]
- Miclaus, R.; Roman, N.; Henter, R.; Caloian, S. Lower Extremity Rehabilitation in Patients with Post-Stroke Sequelae through Virtual Reality Associated with Mirror Therapy. Int. J. Environ. Res. Public Health 2021, 18, 2654. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Liu, H.; Alghofaili, R.; Zhang, Y.; Jiang, Y.; Lobo, F.D.; Li, C.; Li, W.; Huang, H.; Akdere, M.; et al. A Review on Virtual Reality Skill Training Applications. Front. Virtual Real. 2021, 2, 645153. [Google Scholar] [CrossRef]
- Meca-Lallana, V.; Prefasi, D.; Alabarcez, W.; Hernández, T.; García-Vaz, F.; Portaña, A.; Gomis, D.; Téllez, N.; García-Bernáldez, C.; Mauriño, J.; et al. A Pilot Study to Explore Patient Satisfaction with a Virtual Rehabilitation Program in Multiple Sclerosis: The RehabVR Study Protocol. Front. Neurol. 2020, 11, 900. [Google Scholar] [CrossRef]
- Winstein, C.J.; Requejo, P.S.; Zelinski, E.M.; Mulroy, S.J.; Crimmins, E.M. A Transformative Subfield in Rehabilitation Science at the Nexus of New Technologies, Aging, and Disability. Front. Psychol. 2012, 3, 340. [Google Scholar] [CrossRef] [Green Version]
- Solaro, C.; Di Giovanni, R.; Grange, E.; Mueller, M.; Uccelli, M.M.; Bertoni, R.; Brichetto, G.; Tacchino, A.; Patti, F.; Pappalardo, A.; et al. Box and block test, hand grip strength and nine-hole peg test: Correlations between three upper limb objective measures in multiple sclerosis. Eur. J. Neurol. 2020, 27, 2523–2530. [Google Scholar] [CrossRef]
- Cheong, Y.-S.; Kim, A.R.; Park, E.; Yang, W.-J.; Huh, J.-W.; Oh, H.-M.; Min, Y.-S.; Kim, C.-H.; Jung, T.-D.; Lee, Y.-S. Validity of the Buttoning Test in Hand Disability Evaluation of Patients with Stroke. Ann. Rehabil. Med. 2018, 42, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-J.; Marie, D.; Fredrick, A.; Bertram, J.; Utley, K.; Fess, E.E. Predicting hand function in older adults: Evaluations of grip strength, arm curl strength, and manual dexterity. Aging Clin. Exp. Res. 2017, 29, 753–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snickars, J.; Persson, H.; Sunnerhagen, K. Early clinical predictors of motor function in the upper extremity one month post-stroke. J. Rehabil. Med. 2017, 49, 216–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
JTHFT Item | Mean ± SD | Mean ± SD | Time Effect (Pre vs. Post Therapy) | Pairwise Comparison | ||||
---|---|---|---|---|---|---|---|---|
Pre-Therapy | Post-Therapy | F | p | Partial Eta Square | Mean Difference /Std. Er. | Lower Bound CI | Upper Bound CI | |
Writing | 14.68 ± 1.2 | 14.48 ± 1.2 | 115.33 | <0.001 | 0.885 | 0.20/0.01 | 0.16 | 0.24 |
Page turning simulation | 4.95 ± 0.33 | 4.71 ± 0.32 | 28.78 | <0.001 | 0.657 | 0.24/0.04 | 0.14 | 0.33 |
Collecting objects | 6.72 ± 0.57 | 6.55 ± 0.57 | 124.30 | <0.001 | 0.892 | 0.17/0.01 | 0.13 | 0.20 |
Eating simulation | 8.63 ± 0.49 | 8.49 ± 0.48 | 33.17 | <0.001 | 0.689 | 0.13/0.02 | 0.08 | 0.18 |
Stacking checkers | 4.98 ± 0.38 | 4.71 ± 0.37 | 67.81 | <0.001 | 0.819 | 0.26/0.03 | 0.19 | 0.33 |
Picking up large light objects | 3.98 ± 0.46 | 3.84 ± 0.44 | 16.73 | 0.001 | 0.527 | 0.14/0.03 | 0.07 | 0.22 |
Picking up large heavy objects | 4.37 ± 0.51 | 4.24 ± 0.46 | 20.98 | <0.001 | 0.583 | 0.12/0.02 | 0.06 | 0.18 |
JTHFT Item | Mean ± SD | Mean ± SD | Time Effect (Pre vs. Post Therapy) | Pairwise Comparison | ||||
---|---|---|---|---|---|---|---|---|
Pre-Therapy | Post-Therapy | F | p | Partial Eta Square | Mean Difference /Std. Er. | Lower Bound CI | Upper Bound CI | |
Writing | 43.17 ± 7.73 | 41.98 ± 8.04 | 75.43 | <0.001 | 0.834 | 1.19/013 | 0.89 | 1.47 |
Page turning simulation | 5.52 ± 0.72 | 5.30 ± 0.73 | 271.60 | <0.001 | 0.948 | 0.22/0.02 | 0.19 | 0.25 |
Collecting objects | 6.88 ± 0.72 | 6.59 ± 0.71 | 80.19 | <0.001 | 0.842 | 0.29/0.03 | 0.22 | 0.36 |
Eating simulation | 10.47 ± 0.77 | 9.85 ± 0.62 | 43.80 | <0.001 | 0.745 | 0.62/0.09 | 0.42 | 0.82 |
Stacking checkers | 5.76 ± 1.45 | 5.53 ± 1.34 | 12.63 | 0.003 | 0.457 | 0.23/0.06 | 0.09 | 0.37 |
Picking up large light objects | 4.10 ± 0.32 | 4.03 ± 0.50 | 1.089 | 0.313 | 0.068 | 0.07/0.07 | 0.07 | 0.21 |
Picking up large heavy objects | 4.64 ± 0.30 | 4.41 ± 0.29 | 84.32 | <0.001 | 0.849 | 0.23/0.02 | 0.18 | 0.28 |
Item | Mean ± SD | Mean ± SD | Time Effect (Pre vs. Post Therapy) | Pairwise Comparison | |||||
---|---|---|---|---|---|---|---|---|---|
Pre-Therapy | Post-Therapy | F | p | Partial Eta Square | Mean Difference /Std. Er. | Lower Bound CI | Upper Bound CI | ||
9-Hole Test | Dom | 17.64 ± 1.24 | 17.16 ± 1.21 | 135.79 | <0.001 | 0.901 | 0.48/0.04 | 0.39 | 0.57 |
Non-Dom | 20.64 ± 1.30 | 19.50 ± 1.10 | 106.17 | <0.001 | 0.876 | 1.14/0.11 | 0.90 | 1.37 | |
BBT | Dom | 54.80 ± 4.69 | 62.10 ± 3.34 | 187.80 | <0.001 | 0.926 | 7.30/0.53 | 6.16 | 8.44 |
Non-Dom | 50.10 ± 4.52 | 56.00 ± 4.23 | 117.83 | <0.001 | 0.887 | 5.90/0.54 | 4.74 | 7.06 | |
FAST | |||||||||
Rotation | Dom | 19.10 ± 2.08 | 21.70 ± 2.25 | 253.50 | <0.001 | 0.944 | 2.60/0.16 | 2.25 | 2.95 |
Non-Dom | 18.80 ± 1.96 | 20 ± 1.59 | 61.71 | <0.001 | 0.804 | 1.20/0.15 | 0.87 | 1.53 | |
Circumduction | Dom | 77.00± 6.02 | 80.40 ± 5.68 | 266.76 | <0.001 | 0.947 | 3.40/0.21 | 2.96 | 3.84 |
Non-Dom | 72.90 ± 5.93 | 75.40 ± 6.13 | 41.09 | <0.001 | 0.773 | 2.50/0.39 | 1.67 | 3.33 |
Model | R Square | SE | Change Statistics | 95% CI | ||||
---|---|---|---|---|---|---|---|---|
R Square Change | F | p | B | Lower Bound | Upper Bound | |||
1 | 0.832 a | 0.93 | 0.832 | 69.563 | <0.001 | 0.912 | 2.90 | 4.90 |
2 | 0.916 b | 0.68 | 0.084 | 12.968 | 0.003 | 0.794 | 2.59 | 4.19 |
3 | 0.983 c | 0.32 | 0.067 | 46.392 | <0.001 | 0.725 | 2.71 | 3.49 |
4 | 0.989 d | 0.27 | 0.006 | 6.224 | 0.030 | 0.790 | 2.96 | 3.79 |
5 | 0.994 e | 0.21 | 0.005 | 7.595 | 0.020 | 1.112 | 3.59 | 5.91 |
Model | R Square | SE | Change Statistics | 95% CI | ||||
---|---|---|---|---|---|---|---|---|
R Square Change | F | p | B | Lower Bound | Upper Bound | |||
1 | 0.982 a | 1.47 | 0.982 | 763.77 | <0.001 | 0.991 | 1.25 | 1.46 |
2 | 0.993 b | 0.97 | 0.011 | 19.57 | 0.001 | 0.892 | 1.13 | 1.32 |
3 | 0.982 c | 1.47 | 0.982 | 763.77 | <0.001 | 0.850 | 1.07 | 1.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roman, N.; Baseanu, C.; Tuchel, V.I.; Nicolau, C.; Repanovici, A.; Manaila, A.; Minzatanu, D.; Miclaus, R.S. The Benefits of Combining Mixed Virtual Reality Exergaming with Occupational Therapy for Upper Extremity Dexterity. Electronics 2023, 12, 1431. https://doi.org/10.3390/electronics12061431
Roman N, Baseanu C, Tuchel VI, Nicolau C, Repanovici A, Manaila A, Minzatanu D, Miclaus RS. The Benefits of Combining Mixed Virtual Reality Exergaming with Occupational Therapy for Upper Extremity Dexterity. Electronics. 2023; 12(6):1431. https://doi.org/10.3390/electronics12061431
Chicago/Turabian StyleRoman, Nadinne, Cozmin Baseanu, Vlad Ionut Tuchel, Cristina Nicolau, Angela Repanovici, Adina Manaila, Diana Minzatanu, and Roxana Steliana Miclaus. 2023. "The Benefits of Combining Mixed Virtual Reality Exergaming with Occupational Therapy for Upper Extremity Dexterity" Electronics 12, no. 6: 1431. https://doi.org/10.3390/electronics12061431
APA StyleRoman, N., Baseanu, C., Tuchel, V. I., Nicolau, C., Repanovici, A., Manaila, A., Minzatanu, D., & Miclaus, R. S. (2023). The Benefits of Combining Mixed Virtual Reality Exergaming with Occupational Therapy for Upper Extremity Dexterity. Electronics, 12(6), 1431. https://doi.org/10.3390/electronics12061431