Study of the Radiation Pattern and Frequency Response of a Short Linear Antenna Surrounded by Discharge Tubes for the Development of Rapidly Adjustable Wideband Antenna Systems
Abstract
:1. Introduction
2. Description of the Experimental Setup
3. Experimental Results for Different Lamp Configurations and Current Values
3.1. Combination 1
3.2. Combination 2
3.3. Combination 3
3.4. Combination 4
4. Plasma Parameter Estimation
4.1. Drift Approximation
4.2. Microwave Measurement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Althuwayb, A.A. MTM- and SIW-Inspired Bowtie Antenna Loaded with AMC for 5G mm-Wave Applications. Int. J. Antennas Propag. 2021, 2021, 6658819. [Google Scholar] [CrossRef]
- Althuwayb, A.A. Low-Interacted Multiple Antenna Systems Based on Metasurface-Inspired Isolation Approach for MIMO Applications. Arab. J. Sci. Eng. 2022, 47, 2629–2638. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, R.A.; Falcone, F.; Limiti, E. Super-Wide Impedance Bandwidth Planar Antenna for Microwave and Millimeter-Wave Applications. Sensors 2019, 19, 2306. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T. Plasma Antenna; Artech House: Norwood, MA, USA, 2011. [Google Scholar]
- Alexeff, I.; Anderson, T.; Parameswaran, S.; Pradeep, E.; Hulloli, J. Experimental and theoretical results with plasma antennas. IEEE Trans. Plasma Sci. 2006, 34, 166–172. [Google Scholar] [CrossRef]
- Alexeff, I.; Anderson, T.; Farshi, E.; Karnam, N.; Pulasani, N.R. Recent results for plasma antennas. Phys. Plasmas 2008, 15, 057104. [Google Scholar] [CrossRef]
- Bogachev, N.N.; Bogdankevich, I.L.; Gusein-Zade, N.G.; Rukhadze, A.A. Surface wave and linear operating mode of a plasma antenna. Plasma Phys. Rep. 2015, 41, 792–798. [Google Scholar] [CrossRef]
- Naito, T.; Yamaura, S.; Yamamoto, K.; Tanaka, T.; Chiba, H.; Ogino, H.; Takahagi, K.; Kitagawa, S.; Taniguchi, D. Theoretical and experimental investigation of plasma antenna characteristics on the basis of gaseous collisionality and electron density. Jpn. J. Appl. Phys. 2015, 54, 016001. [Google Scholar] [CrossRef]
- Russo, P.; Primiani, V.M.; Cerri, G.; De Leo, R.; Vecchioni, E. Experimental Characterization of a Surfaguide Fed Plasma Antenna. IEEE Trans. Antennas Propag. 2011, 59, 425–433. [Google Scholar] [CrossRef]
- Kumar, R.; Bora, D. Wireless communication capability of a reconfigurable plasma antenna. J. Appl. Phys. 2011, 109, 063303. [Google Scholar] [CrossRef]
- Zali, H.M.; Ali, M.T.; Pasya, I.; Ya’acob, N.; Halili, N.A.; Ja’afar, H.; Azlan, A.A. A monopole fluorescent tube antenna with Wi-Fi Router. In Proceedings of the 21st International Conference on Telecommunications (ICT), Lisbon, Portugal, 4–7 May 2014; pp. 358–362. [Google Scholar]
- Kumar, V.; Mishra, M.; Joshi, N.K. Study of a fluorescent tube as plasma antenna. Prog. Electromagn. Res. Lett. 2011, 24, 17–26. [Google Scholar] [CrossRef]
- Ye, H.Q.; Gao, M.; Tang, C.J. Radiation Theory of the Plasma Antenna. IEEE Trans. Antennas Propag. 2011, 59, 1497–1502. [Google Scholar] [CrossRef]
- Sadeghikia, F.; Hodjat-Kashani, F. A two element plasma antenna array. Eng. Technol. Appl. Sci. Res. 2013, 3, 516–521. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, P. Study of array plasma antenna parameters. AIP Adv. 2018, 8, 045306. [Google Scholar] [CrossRef]
- Jusoh, M.T.; Lafond, O.; Colombel, F.; Himdi, M. Performance and radiation patterns of a reconfigurable plasma corner-reflector antenna. IEEE Antennas Wireless Propag. Lett. 2013, 12, 1137–1140. [Google Scholar] [CrossRef]
- Nasr, N.; Mehdian, H.; Hajisharifi, K.; Hasanbeigi, A. Analysis of nested design of plasma antenna based on the azimuthally symmetric surface waves: UHF and SHF bands. Phys. Plasmas 2017, 24, 103304. [Google Scholar] [CrossRef]
- Sadeghikia, F.; Hodjat-Kashani, F.; Rashed-Mohassel, J.; Lotfi, A.A.; Ghayoomeh-Bozorgi, J. A Yagi-Uda Plasma Monopole Array. J. Electromagn. Waves Appl. 2012, 26, 885–894. [Google Scholar] [CrossRef]
- Armaki, F.S.M.; Armaki, S.A.M. Design and Fabrication of Plasma Yagi–Uda Array Antenna with Beamforming. IEEE Trans. Plasma Sci. 2019, 47, 2567–2570. [Google Scholar] [CrossRef]
- Jusoh, M.T.; Lafond, O.; Colombel, F.; Himdi, M. Performance of a reconfigurable reflector antenna with scanning capability using low cost plasma medium. Micro Opt. Tech. Lett. 2013, 55, 2869–2874. [Google Scholar] [CrossRef]
- Ja’afar, H.; Ali, M.T.B.; Dagang, A.N.B.; Zali, H.M.; Halili, N.A. A Reconfigurable Monopole Antenna with Fluorescent Tubes Using Plasma Windowing Concepts for 4.9-GHz Application. IEEE Trans. Plasma Sci. 2015, 43, 815–820. [Google Scholar] [CrossRef]
- Ja’afar, H.; Ali, M.T.B.; Dagang, A.N.B.; Ibrahim, I.P.; Halili, N.A.; Zali, H.M. Reconfigurable Plasma Antenna Array by Using Fluorescent Tube for Wi-Fi Application. Radioengineering 2016, 25, 275–282. [Google Scholar] [CrossRef]
- Melazzi, D.; De Carlo, P.; Trezzolani, F.; Manente, M.; Capobianco, A.; Boscolo, S. Beam-forming capabilities of a plasma circular reflector antenna. IET Microw. Antennas Propag. 2018, 12, 2301–2306. [Google Scholar] [CrossRef]
- Li, J.; Astafiev, A.M.; Kudryavtsev, A.A.; Yuan, C.; Yao, J.; Zhou, Z.; Wang, X. Monopole Antenna with Reconfigurable Quarter Wavelength Plasma Reflector. IEEE Trans. Plasma Sci. 2020, 48, 364–368. [Google Scholar] [CrossRef]
- Astafiev, A.M.; Kudryavtsev, A.A.; Chtrtsov, A.S.; Yuan, C.; Yao, J.; Zhou, Z. Characteristics of a short linear antenna with a cylindrical plasma reflector. In Proceedings of the 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Zhuhai, China, 1–4 December 2021; pp. 1–3. [Google Scholar]
- Raizer, Y.P. Gas Discharge Physics; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Balanis, C.A. Antenna Theory Analysis and Design, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1997. [Google Scholar]
- Golyatina, R.I.; Maiorov, S.A. Characteristics of Electron Drift in an Ar–Hg Mixture. Plasma Phys. Rep. 2018, 44, 453–457. [Google Scholar] [CrossRef]
- Ginzburg, V.L. The Propagation of Electromagnetic Waves in Plasmas; Pergamon Press: Oxford, UK, 1970. [Google Scholar]
- Howlader, M.; Yang, Y.; Roth, J.R. Time-resolved measurements of electron number density and collision frequency for a fluorescent lamp plasma using microwave diagnostics. IEEE Trans. Plasma Sci. 2005, 33, 1093–1099. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, Z. Diagnostics of plasma electron density and collision frequency of fluorescent lamp using microwave transmission diagnostics. J. Phys. Conf. Ser. 2019, 1324, 012073. [Google Scholar] [CrossRef]
0.5 GHz | 0.85 GHz | 1 GHz | 1.5 GHz | |
---|---|---|---|---|
200 mA | 1.9 | 2.4 | 2.6 | 3.6 |
100 mA | 1.5 | 1.9 | 2.1 | 2.9 |
50 mA | 1.2 | 1.3 | 1.5 | 2.3 |
35 mA | 0.6 | 1.1 | 1.2 | 1.8 |
0.5 GHz | 0.75 GHz | 1 GHz | 1.5 GHz | |
---|---|---|---|---|
200 mA | 2.8 | 4.1 | 5.1 | 3.4 |
100 mA | 2.3 | 3.4 | 4.5 | 2.9 |
50 mA | 1.5 | 3.1 | 3.7 | 1.8 |
35 mA | 0.9 | 2.7 | 3.1 | 1.2 |
0.5 GHz | 1 GHz | 1.25 GHz | 1.5 GHz | |
---|---|---|---|---|
200 mA | 2.5 | 5.7 | 5.1 | 6.4 |
100 mA | 1.9 | 5.1 | 4.5 | 5.5 |
50 mA | 1.2 | 4.2 | 3.7 | 4.1 |
35 mA | 0.9 | 3.8 | 3.1 | 3.3 |
0.5 GHz | 1 GHz | 1.35 GHz | 1.5 GHz | |
---|---|---|---|---|
200 mA | 1.7 | 5.5 | 5.9 | 5.7 |
100 mA | 1.5 | 4.8 | 4.9 | 3.1 |
50 mA | 0.9 | 3.5 | 3.1 | 1.2 |
35 mA | 0.6 | 2.8 | 2.5 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Lyu, X.; Yao, J.; Astafiev, A.M.; Li, H.-P. Study of the Radiation Pattern and Frequency Response of a Short Linear Antenna Surrounded by Discharge Tubes for the Development of Rapidly Adjustable Wideband Antenna Systems. Electronics 2023, 12, 1277. https://doi.org/10.3390/electronics12061277
Wang H, Lyu X, Yao J, Astafiev AM, Li H-P. Study of the Radiation Pattern and Frequency Response of a Short Linear Antenna Surrounded by Discharge Tubes for the Development of Rapidly Adjustable Wideband Antenna Systems. Electronics. 2023; 12(6):1277. https://doi.org/10.3390/electronics12061277
Chicago/Turabian StyleWang, Hailu, Xingbao Lyu, Jingfeng Yao, Aleksandr M. Astafiev, and He-Ping Li. 2023. "Study of the Radiation Pattern and Frequency Response of a Short Linear Antenna Surrounded by Discharge Tubes for the Development of Rapidly Adjustable Wideband Antenna Systems" Electronics 12, no. 6: 1277. https://doi.org/10.3390/electronics12061277
APA StyleWang, H., Lyu, X., Yao, J., Astafiev, A. M., & Li, H.-P. (2023). Study of the Radiation Pattern and Frequency Response of a Short Linear Antenna Surrounded by Discharge Tubes for the Development of Rapidly Adjustable Wideband Antenna Systems. Electronics, 12(6), 1277. https://doi.org/10.3390/electronics12061277