# Single-Timestamp Skew Correction (STSC) in V2X Networks

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Related Work

## 3. Proposed Methodology

## 4. Mathematical Analysis

## 5. Implementation and Results

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

STSC | Single Timestamp Skew Correction |

DSP | Digital signal processor |

V2X | Vehicle-to-everything |

V2P | Vehicle-to-pedestrian |

V2I | Vehicles-to-infrastructure |

V2C | Vehicle-to-cloud |

WSN | Wireless sensor network |

LTS | Lightweight time synchronization |

TPSN | Timing-sync protocol for sensor networks |

FTSP | Flooding time synchronization protocol |

PLL | Phase Lock Loop |

LS | Least Square |

DSP | Digital signal processing |

ZC-TED | Zero-Crossing Timing Error Detector (ZC-TED) |

## References

- Abboud, K.; Omar, H.A.; Zhuang, W. Interworking of DSRC and cellular network technologies for V2X communications: A survey. IEEE Trans. Veh. Technol.
**2016**, 65, 9457–9470. [Google Scholar] [CrossRef] - Bayu, T.I.; Huang, Y.F.; Chen, J.K. Performance of Fuzzy Inference System for Adaptive Resource Allocation in C-V2X Networks. Electronics
**2022**, 11, 4063. [Google Scholar] [CrossRef] - Do, D.T.; Van Nguyen, M.S.; Voznak, M.; Kwasinski, A.; de Souza, J.N. Performance analysis of clustering car-following V2X system with wireless power transfer and massive connections. IEEE Internet Things J.
**2021**, 9, 14610–14628. [Google Scholar] [CrossRef] - Hasan, M.; Mohan, S.; Shimizu, T.; Lu, H. Securing vehicle-to-everything (V2X) communication platforms. IEEE Trans. Intell. Veh.
**2020**, 5, 693–713. [Google Scholar] [CrossRef] [Green Version] - Abbas, F.; Liu, G.; Fan, P.; Khan, Z. An efficient cluster based resource management scheme and its performance analysis for V2X networks. IEEE Access
**2020**, 8, 87071–87082. [Google Scholar] [CrossRef] - Naidu, P.V.; Dhanekula, M.B.; Almustafa, K.M.; Kumar, A.; Meerja, K.A.; Akkapanthula, S.H. Design and performance analysis of MAZE shaped quad port ACS fed tri band MIMO antenna for V2V and multi band applications. AEU-Int. J. Electron. Commun.
**2021**, 134, 153676. [Google Scholar] [CrossRef] - Almasoud, A.S.; Eisa, T.A.E.; Obayya, M.; Abdelmaboud, A.; Al Duhayyim, M.; Yaseen, I.; Hamza, M.A.; Motwakel, A. Coyote Optimization Using Fuzzy System for Energy Efficiency in WSN. Comput. Mater. Contin.
**2022**, 72, 3269–3281. [Google Scholar] [CrossRef] - MacHardy, Z.; Khan, A.; Obana, K.; Iwashina, S. V2X access technologies: Regulation, research, and remaining challenges. IEEE Commun. Surv. Tutor.
**2018**, 20, 1858–1877. [Google Scholar] [CrossRef] - Wang, J.; Shao, Y.; Ge, Y.; Yu, R. A survey of vehicle to everything (V2X) testing. Sensors
**2019**, 19, 334. [Google Scholar] [CrossRef] [Green Version] - Gyawali, S.; Xu, S.; Qian, Y.; Hu, R.Q. Challenges and solutions for cellular based V2X communications. IEEE Commun. Surv. Tutor.
**2020**, 23, 222–255. [Google Scholar] [CrossRef] - Hasan, K.F.; Wang, C.; Feng, Y.; Tian, Y.C. Time synchronization in vehicular ad-hoc networks: A survey on theory and practice. Veh. Commun.
**2018**, 14, 39–51. [Google Scholar] [CrossRef] [Green Version] - Wu, Y.C.; Chaudhari, Q.; Serpedin, E. Clock synchronization of wireless sensor networks. IEEE Signal Process. Mag.
**2010**, 28, 124–138. [Google Scholar] [CrossRef] - Kopetz, H.; Ochsenreiter, W. Clock synchronization in distributed real-time systems. IEEE Trans. Comput.
**1987**, 100, 933–940. [Google Scholar] [CrossRef] - Hasan, K.F.; Feng, Y.; Tian, Y.C. GNSS time synchronization in vehicular ad-hoc networks: Benefits and feasibility. IEEE Trans. Intell. Transp. Syst.
**2018**, 19, 3915–3924. [Google Scholar] [CrossRef] [Green Version] - Abbasi, M.; Shahraki, A.; Barzegar, H.R.; Pahl, C. Synchronization techniques in “device to device-and vehicle to vehicle-enabled” cellular networks: A survey. Comput. Electr. Eng.
**2021**, 90, 106955. [Google Scholar] [CrossRef] - Khan, U.A.; Lee, S.S. Distance-based resource allocation for vehicle-to-Pedestrian safety communication. Electronics
**2020**, 9, 1640. [Google Scholar] [CrossRef] - Bregni, S. Characterization and modelling of clocks. Synchronization Digit. Telecommun. Netw.
**2002**, 1, 203–281. [Google Scholar] - Römer, K. Time synchronization in ad hoc networks. In Proceedings of the 2nd ACM International Symposium on Mobile Ad Hoc Networking & Computing, Long Beach, CA, USA, 4–5 October 2001; pp. 173–182. [Google Scholar]
- Elson, J.; Girod, L.; Estrin, D. Fine-grained network time synchronization using reference broadcasts. ACM SIGOPS Oper. Syst. Rev.
**2002**, 36, 147–163. [Google Scholar] [CrossRef] [Green Version] - Hashmi, S.U.; Hussain, M.; Muslim, F.B.; Inayat, K.; Hwang, S.O. Implementation of symbol timing recovery for estimation of clock skew. Int. J. Internet Technol. Secur. Trans.
**2021**, 11, 241–268. [Google Scholar] [CrossRef] - Hashmi, S.U.; Hussain, M.; Arshad, S.N.; Inayat, K.; Hwang, S.O. Energy efficient cross layer time synchronisation in cognitive radio networks. Int. J. Internet Technol. Secur. Trans.
**2021**, 11, 329–340. [Google Scholar] [CrossRef] - Huang, D.J.; Teng, W.C.; Yang, K.T. Secured flooding time synchronization protocol with moderator. Int. J. Commun. Syst.
**2013**, 26, 1092–1115. [Google Scholar] [CrossRef] - Sattar, D.; Sheltami, T.R.; Mahmoud, A.S.; Shakshuki, E.M. A comparative analysis of flooding time synchronization protocol and recursive time synchronization protocol. In Proceedings of the International Conference on Advances in Mobile Computing & Multimedia, Vienna, Austria, 2–4 December 2013; pp. 151–155. [Google Scholar]
- Panayirci, E.; Bar-Ness, E.K. A new approach for evaluating the performance of a symbol timing recovery system employing a general type of nonlinearity. IEEE Trans. Commun.
**1996**, 44, 29–33. [Google Scholar] [CrossRef] - Kim, D.K.; Do, S.H.; Cho, H.B.; Chol, H.J.; Kim, K.B. A new joint algorithm of symbol timing recovery and sampling clock adjustment for OFDM systems. IEEE Trans. Consum. Electron.
**1998**, 44, 1142–1149. [Google Scholar] - Lee, D.; Cheun, K. A new symbol timing recovery algorithm for OFDM systems. IEEE Trans. Consum. Electron.
**1997**, 43, 767–775. [Google Scholar] - Wang, J.; Yang, Z.X.; Pan, C.Y.; Han, M.; Yang, L. A combined code acquisition and symbol timing recovery method for TDS-OFDM. IEEE Trans. Broadcast.
**2003**, 49, 304–308. [Google Scholar] [CrossRef] - Belega, D.; Fontanelli, D.; Petri, D. Dynamic phasor and frequency measurements by an improved Taylor weighted least squares algorithm. IEEE Trans. Instrum. Meas.
**2015**, 64, 2165–2178. [Google Scholar] [CrossRef] - Simeone, O.; Spagnolini, U.; Bar-Ness, Y.; Strogatz, S.H. Distributed synchronization in wireless networks. IEEE Signal Process. Mag.
**2008**, 25, 81–97. [Google Scholar] [CrossRef] - Leng, M.; Wu, Y.C. Distributed clock synchronization for wireless sensor networks using belief propagation. IEEE Trans. Signal Process.
**2011**, 59, 5404–5414. [Google Scholar] [CrossRef] [Green Version] - Zhou, H.; Li, M.; Wang, N.; Min, G.; Wu, J. Accelerating Deep Learning Inference via Model Parallelism and Partial Computation Offloading. IEEE Trans. Parallel Distrib. Syst.
**2022**, 34, 475–488. [Google Scholar] [CrossRef] - Zhou, H.; Wu, T.; Chen, X.; He, S.; Guo, D.; Wu, J. Reverse auction-based computation offloading and resource allocation in mobile cloud-edge computing. IEEE Trans. Mob. Comput.
**2022**. [Google Scholar] [CrossRef] - Rice, M. Digital Communications: A Discrete-Time Approach; Pearson Education India: Chennai, India, 2009. [Google Scholar]
- Yang, H.K.; Snelgrove, M. Symbol timing recovery using oversampling techniques. In Proceedings of the ICC/SUPERCOMM’96-International Conference on Communications, Dallas, TX, USA, 23–27 June 1996; Volume 3, pp. 1296–1300. [Google Scholar]
- Bertolucci, M.; Cassettari, R.; Fanucci, L. On the frequency carrier offset and symbol timing estimation for CCSDS 131.2-B-1 high data-rate telemetry receivers. Sensors
**2021**, 21, 2915. [Google Scholar] [CrossRef]

Node A Clock | 273,000 | 274,003 | 275,006 | 276,009 | 277,012 | 278,015 |

Node B Clock | 254,000 | 25,500 | 256,000 | 257,000 | 258,000 | 259,000 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hashmi, M.U.; Hussain, M.; Babar, M.; Qureshi, B.
Single-Timestamp Skew Correction (STSC) in V2X Networks. *Electronics* **2023**, *12*, 1276.
https://doi.org/10.3390/electronics12061276

**AMA Style**

Hashmi MU, Hussain M, Babar M, Qureshi B.
Single-Timestamp Skew Correction (STSC) in V2X Networks. *Electronics*. 2023; 12(6):1276.
https://doi.org/10.3390/electronics12061276

**Chicago/Turabian Style**

Hashmi, Muhammad Usman, Muntazir Hussain, Muhammad Babar, and Basit Qureshi.
2023. "Single-Timestamp Skew Correction (STSC) in V2X Networks" *Electronics* 12, no. 6: 1276.
https://doi.org/10.3390/electronics12061276