Detecting Phishing Accounts on Ethereum Based on Transaction Records and EGAT
Abstract
:1. Introduction
- According to the anonymity of the Ethereum trading network, a star subgraph structure is designed, and the node features as well as edge features are constructed manually;
- A double-layer EGAT network with feature weight is constructed, which efficaciously aggregates edge features for graph classification tasks.
2. Related Work
3. Methodology
3.1. Graph Structure
3.1.1. Edge Feature
3.1.2. Node Feature
3.2. EGAT
3.2.1. Feature Weight
3.2.2. EGAT Layer
4. Experimental Results
4.1. Dataset
4.2. Experimental Settings
4.3. Evaluation
4.4. Evaluation on Phishing Detection
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shao, Q.F.; Jin, C.Q.; Zhang, Z.; Qian, W.N.; Zhou, A.Y. Blockchain: Architecture and Research Progress. Chin. J. Comput. 2018, 41, 969–988. [Google Scholar]
- Guo, D.; Dong, J.; Wang, K. Blockchain: Graph Structure and Statistical Properties of Ethereum Transaction Relationships. Inf. Sci. 2019, 492, 58–71. [Google Scholar] [CrossRef]
- Puthal, D.; Malik, N.; Mohanty, S.P.; Kougianos, E.; Das, G. Everything You Wanted to Know About the Blockchain: Its Promise, Components, Processes, and Problems. IEEE Consum. Electron. Mag. 2018, 7, 6–14. [Google Scholar] [CrossRef]
- Zhu, L.H.; Gao, F.; Shen, M.; Li, Y.D.; Zheng, B.K.; Mao, H.; Wu, Z. Survey on Privacy Preserving Techniques for Blockchain Technology. J. Comput. Res. Dev. 2017, 54, 2170–2186. [Google Scholar]
- Etherscan.io. Available online: https://etherscan.io/ (accessed on 10 December 2022).
- Yuan, Y.; Wang, F.Y. Blockchain: The State of the Art and Future Trends. Acta Autom. Sin. 2016, 42, 481–494. [Google Scholar]
- Han, L.; Yang, Z.; Jiang, Y.; Zhao, W.; Sun, J. Enabling Clone Detection for Ethereum via Smart Contract Birthmarks. In Proceedings of the 2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC), Montreal, QC, Canada, 25–26 May 2019; pp. 105–115. [Google Scholar]
- The Chainalysis Crypto Crime Report is Here. Download to Learn Why 2019 Was the Year of the Ponzi Scheme. Available online: https://blog.chainalysis.com/reports/cryptocurrency-crime-2020-report/ (accessed on 10 February 2023).
- Conti, M.; Kumar, E.S.; Lal, C.; Ruj, S. A Survey on Security and Privacy Issues of Bitcoin. IEEE Commun. Surv. Tutor. 2018, 20, 3416–3452. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.Z.; Wang, J.T.; Gu, Y. Security Threat Analysis of Blockchain Technology. J. Nanjing Univ. Posts Telecommun. 2019, 39, 48–62. [Google Scholar]
- Huang, B.; Liu, Z.; Chen, J.; Liu, A.; Liu, Q.; He, Q. Behavior Pattern Clustering in Blockchain Networks. Multimed. Tools Appl. 2017, 76, 20099–20110. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, J.; Wu, J. Phishing Detection on Ethereum via Attributed Ego-Graph Embedding. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2538–2542. [Google Scholar] [CrossRef]
- Yu, T.; Chen, X.; Xu, Z.; Xu, J. MP-GCN: A Phishing Nodes Detection Approach via Graph Convolution Network for Ethereum. Appl. Sci. 2022, 12, 7294. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Chen, H. EGAT: Edge-Featured Graph Attention Network. In Artificial Neural Networks and Machine Learning (ICANN); Springer: Cham, Switzerland, 2021; pp. 253–264. [Google Scholar]
- Featuretools. Available online: https://docs.featuretools.com/ (accessed on 27 February 2021).
- Graph-Based Forensic Investigation of Bitcoin Transactions. Available online: https://dr.lib.iastate.edu/handle/20.500.12876/28432 (accessed on 25 February 2021).
- Monaco, J.V. Identifying Bitcoin users by transaction behavior. In Proceedings of the Biometric and Surveillance Technology for Human and Activity Identification XII, Baltimore, MD, USA, 14 May 2015; p. 945704. [Google Scholar]
- Androulaki, E.; Karame, G.O.; Roeschlin, M.; Scherer, T.; Capkun, S. Evaluating User Privacy in Bitcoin. In Financial Cryptography and Data Security: 17th International Conference, FC 2013, Okinawa, Japan, 1–5 April 2013, Revised Selected Papers; Springer: Berlin/Heidelberg, Germany, 2013; pp. 34–51. [Google Scholar]
- Reid, F.; Harrigan, M. An Analysis of Anonymity in the Bitcoin System; Springer: New York, NY, USA, 2012; pp. 179–223. [Google Scholar]
- Sun Yin, H.H.; Langenheldt, K.; Harlev, M.; Mukkamala, R.R.; Vatrapu, R. Regulating Cryptocurrencies: A Supervised Machine Learning Approach to De-anonymizing the Bitcoin Blockchain. J. Manag. Inf. Syst. 2019, 36, 37–73. [Google Scholar] [CrossRef]
- Lin, Y.J.; Wu, P.W.; Hsu, C.H.; Tu, I.P.; Liao, S.W. An Evaluation of Bitcoin Address Classification Based on Transaction History Summarization. In Proceedings of the 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Seoul, Republic of Korea, 14–17 May 2019; pp. 302–310. [Google Scholar]
- Toyoda, K.; Ohtsuki, T.; Mathiopoulos, P.T. MultiClass Bitcoin-Enabled Service Identification Based on Transaction History Summarization. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1153–1160. [Google Scholar]
- Toyoda, K.; Ohtsuki, T.; Mathiopoulos, P.T. Identification of High Yielding Investment Programs in Bitcoin via Transactions Pattern Analysis. In Proceedings of the GLOBECOM 2017–2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Kanemura, K.; Ohtsuki, T.; Toyoda, K. An Evaluation of Bitcoin Address Classification Based on Transaction History Summarization. In Proceedings of the International Conference on Blockchain and Cryptocurrency (ICBC), Seoul, Republic of Korea, 14–17 May 2019; pp. 302–310. [Google Scholar]
- Chen, W.; Zheng, Z.; Ngai, E.C.H.; Zheng, P.; Zhou, Y. Exploiting Blockchain Data to Detect Smart Ponzi Schemes on Ethereum. IEEE Access 2019, 7, 37575–37586. [Google Scholar] [CrossRef]
- Wen, T.; Xiao, Y.; Wang, A.; Wang, H. A novel hybrid feature fusion model for detecting phishing scam on Ethereum using deep neural network. Expert Syst. Appl. 2023, 211, 118463. [Google Scholar] [CrossRef]
- Kabla, A.H.H.; Anbar, M.; Manickam, S.; Karupayah, S. Eth-PSD: A Machine Learning-Based Phishing Scam Detection Approach in Ethereum. IEEE Access 2022, 10, 118043–118057. [Google Scholar] [CrossRef]
- Ju, Y.; Sun, G.; Chen, Q.; Zhang, M.; Zhu, H.; Rehman, M.U. A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-ShortTerm Wind Power Forecasting. IEEE Access 2019, 7, 28309–28318. [Google Scholar] [CrossRef]
- Jourdan, M.; Blandin, S.; Wynter, L.; Deshpande, P. Characterizing Entities in the Bitcoin Blockchain. In Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018; pp. 55–62. [Google Scholar]
- Chen, W.; Guo, X.; Chen, Z.; Zheng, Z.; Lu, Y. Phishing Scam Detection on Ethereum: Towards Financial Security for Blockchain Ecosystem. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan, 7–14 January 2021; pp. 4506–4512. [Google Scholar]
- Bian, L.; Zhang, L.; Zhao, K.; Shi, F. Detection Method of Ethereum Malicious Account Based on LightGBM. Inf. Netw. Secur. 2020, 20, 73–80. [Google Scholar]
Type | Train | Test | ||
---|---|---|---|---|
label | Phishing | Normal | Phishing | Normal |
|Y| | 1327 | 1360 | 332 | 340 |
|V| | 55,777 | 34,846 | 13,925 | 7408 |
|E| | 187,119 | 82,860 | 46,344 | 16,347 |
Model | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Graph2vec | 0.731 | 0.743 | 0.742 | 0.732 |
Node2vec | 0.605 | 0.614 | 0.614 | 0.609 |
DeepWalk | 0.724 | 0.599 | 0.792 | 0.682 |
Sub2vec | 0.510 | 0.509 | 0.520 | 0.514 |
GraphSage | 0.818 | 0.986 | 0.832 | 0.832 |
GCN | 0.819 | 0.868 | 0.694 | 0.853 |
GAT | 0.924 | 0.935 | 0.888 | 0.911 |
EGAT | 0.981 | 0.966 | 0.993 | 0.979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Yang, W.; Tian, X. Detecting Phishing Accounts on Ethereum Based on Transaction Records and EGAT. Electronics 2023, 12, 993. https://doi.org/10.3390/electronics12040993
Zhou X, Yang W, Tian X. Detecting Phishing Accounts on Ethereum Based on Transaction Records and EGAT. Electronics. 2023; 12(4):993. https://doi.org/10.3390/electronics12040993
Chicago/Turabian StyleZhou, Xuanchen, Wenzhong Yang, and Xiaodan Tian. 2023. "Detecting Phishing Accounts on Ethereum Based on Transaction Records and EGAT" Electronics 12, no. 4: 993. https://doi.org/10.3390/electronics12040993
APA StyleZhou, X., Yang, W., & Tian, X. (2023). Detecting Phishing Accounts on Ethereum Based on Transaction Records and EGAT. Electronics, 12(4), 993. https://doi.org/10.3390/electronics12040993