Phase-Only Pattern Synthesis for Spaceborne Array Antenna Based on Improved Mayfly Optimization Algorithm
Abstract
:1. Introduction
2. Mayfly Optimization Algorithm
2.1. Movement of Male Mayfly
2.2. Movement of Female Mayfly
2.3. Mayfly Mating
3. Improved Mayfly Optimization Algorithm
3.1. Adaptive Weight
3.2. Levy Flight Strategy
3.3. Golden Sine Factor
3.4. The Flow of IMOA
Algorithm 1:improved mayfly optimization algorithm |
|
3.5. Algorithm Complexity Analysis
4. Performance Analysis
5. Application of IMOA in the Array Antenna Pattern Synthesis
5.1. Signal Model of the Planar Phased Array Antenna
5.2. Results Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prado, D.R. The Generalized Intersection Approach for Electromagnetic Array Antenna Beam-Shaping Synthesis: A Review. IEEE Access 2022, 10, 87053–87068. [Google Scholar] [CrossRef]
- Ha, B.V.; Mussetta, M.; Pirinoli, P.; Zich, R.E. Modified Compact Genetic Algorithm for Thinned Array Synthesis. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1105–1108. [Google Scholar] [CrossRef]
- Keizer, W.P.M.N. Low-Sidelobe Pattern Synthesis Using Iterative Fourier Techniques Coded in MATLAB [EM Programmer’s Notebook]. IEEE Antennas Propag. Mag. 2009, 51, 137–150. [Google Scholar] [CrossRef]
- Li, H.; Jiang, Y.; Ding, Y.; Tan, J. Zhou, J. Low-Sidelobe Pattern Synthesis for Sparse Conformal Arrays Based on PSO-SOCP Optimization. IEEE Access 2018, 6, 77429–77439. [Google Scholar] [CrossRef]
- Keizer, W.P.M.N. Amplitude-Only Low Sidelobe Synthesis for Large Thinned Circular Array Antennas. IEEE Trans. Antennas Propag. 2012, 60, 1157–1161. [Google Scholar] [CrossRef]
- Yang, F. Synthesis of Low-Sidelobe 4-D Heterogeneous Antenna Arrays Including Mutual Coupling Using Iterative Convex Optimization. IEEE Trans. Antennas Propag. 2020, 68, 329–340. [Google Scholar] [CrossRef]
- Lin, Z.; Hu, H.; Chen, B.; Lei, S.; Tian, J.; Gao, Y. Shaped-Beam Pattern Synthesis With Sidelobe Level Minimization via Nonuniformly-Spaced Sub-Array. IEEE Trans. Antennas Propag. 2022, 70, 3421–3436. [Google Scholar] [CrossRef]
- Safaai-Jazi, A.; Stutzman, W.L. A New Low-Sidelobe Pattern Synthesis Technique for Equally Spaced Linear Arrays. IEEE Trans. Antennas Propag. 2016, 64, 1317–1324. [Google Scholar] [CrossRef]
- Khalaj-Amirhosseini, M. Phase-Only Power Pattern Synthesis of Linear Arrays Using Autocorrelation Matching Method. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1487–1491. [Google Scholar] [CrossRef]
- Liang, J.; Fan, X.; Fan, W.; Zhou, D.; Li, J. Phase-Only Pattern Synthesis for Linear Antenna Arrays. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3232–3235. [Google Scholar] [CrossRef]
- Liang, Z.; Ouyang, J.; Yang, F. A hybrid GA-PSO optimization algorithm for conformal antenna array pattern synthesis. J. Electromagn. Waves Appl. 2018, 32, 1601–1615. [Google Scholar] [CrossRef]
- Anjaneyulu, G.; Siddartha Varma, J. Synthesis of Low Sidelobe Radiation Patterns from Embedded Dipole Arrays Using Genetic Algorithm. Sustain. Commun. Netw. Appl. 2020, 39, 791–797. [Google Scholar]
- Mohammadi Shirkolaei, M. A New Design Approach of Low-Noise Stable Broadband Microwave Amplifier Using Hybrid Optimization Method. IETE J. Res. 2022, 68, 4160–4166. [Google Scholar] [CrossRef]
- Khodier, M.M.; Christodoulou, C.G. Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization. IEEE Trans. Antennas Propag. 2005, 53, 2674–2679. [Google Scholar] [CrossRef]
- Yan, K.; Lu, Y. Sidelobe reduction in array-pattern synthesis using genetic algorithm. IEEE Trans. Antennas Propag. 1997, 45, 1117–1122. [Google Scholar]
- Kang, M.S.; Won, Y.J.; Lim, B.G.; Kim, K.T. Efficient Synthesis of Antenna Pattern Using Improved PSO for Spaceborne SAR Performance and Imaging in Presence of Element Failure. IEEE Sensors J. 2018, 18, 6576–6587. [Google Scholar] [CrossRef]
- Cui, C.Y.; Jiao, Y.C.; Zhang, L. Synthesis of Some Low Sidelobe Linear Arrays Using Hybrid Differential Evolution Algorithm Integrated With Convex Programming. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2444–2448. [Google Scholar] [CrossRef]
- Das, A.; Mandal, D.; Ghoshal, S.P.; Kar, R. Moth flame optimization based design of linear and circular antenna array for side lobe reduction. Int. J. Numer. Model. Electron. Netw. Devices Fields 2018, 32, e2486. [Google Scholar] [CrossRef]
- Darvish, A.; Ebrahimzadeh, A. Improved Fruit-Fly Optimization Algorithm and Its Applications in Antenna Arrays Synthesis. IEEE Trans. Antennas Propag. 2018, 66, 1756–1766. [Google Scholar] [CrossRef]
- Zheng, T. IWORMLF: Improved Invasive Weed Optimization With Random Mutation and Lévy Flight for Beam Pattern Optimizations of Linear and Circular Antenna Arrays. IEEE Access 2020, 8, 19460–19478. [Google Scholar] [CrossRef]
- Li, X.; Luk, M.K. The Grey Wolf Optimizer and Its Applications in Electromagnetics, in IEEE Transactions on Antennas and Propagation. J. Korean Inst. Commun. Inf. Sci. 2020, 68, 2186–2197. [Google Scholar]
- Zhang, H.; Liu, Z.; Gui, S.; Zou, M.; Wang, P. Improved mayfly algorithm based on hybrid mutation. Electron. Lett. 2022, 58, 687–689. [Google Scholar] [CrossRef]
- Pinchera, D.; Migliore, M.D.; Schettino, F.; Lucido, M.; Panariello, G. An Effective Compressed-Sensing Inspired Deterministic Algorithm for Sparse Array Synthesis. IEEE Trans. Antennas Propag. 2018, 66, 149–159. [Google Scholar] [CrossRef]
- Singh, U.; Kumar, H.; Kamal, T.S. Design of Yagi-Uda Antenna Using Biogeography Based Optimization. IEEE Trans. Antennas Propag. 2010, 58, 3375–3379. [Google Scholar] [CrossRef]
- Baumgartner, P. Multi-Objective Optimization of Yagi–Uda Antenna Applying Enhanced Firefly Algorithm With Adaptive Cost Function. IEEE Trans. Magn. 2018, 54, 1–4. [Google Scholar] [CrossRef]
- Quevedo-Teruel, O.; Rajo-Iglesias, E. Ant Colony Optimization in Thinned Array Synthesis With Minimum Sidelobe Level. IEEE Antennas Wirel. Propag. Lett. 2006, 5, 349–352. [Google Scholar] [CrossRef]
- Zervoudakis, K.; Tsafarakis, S. A Mayfly Optimization Algorithm; Elsevier: Amsterdam, The Netherlands, 2020; Volume 145. [Google Scholar]
- Owoola, E.O.; Xia, K.; Wang, T.; Umar, A.; Akindele, R.G. Pattern Synthesis of Uniform and Sparse Linear Antenna Array Using Mayfly Algorithm. IEEE Access 2021, 9, 77954–77975. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, B. A Novel Ant Colony Optimization Algorithm With Levy Flight. IEEE Access 2020, 8, 67205–67213. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.S. Improved Whale Optimization Algorithm Based on Nonlinear Adaptive Weight and Golden Sine Operator. IEEE Access 2020, 8, 77013–77048. [Google Scholar] [CrossRef]
- Ho, Y.; Pepyne, D. Simple Explanation of the No-Free-Lunch Theorem and Its Implications. J. Optim. Theory Appl. 2002, 115, 549–570. [Google Scholar] [CrossRef]
- Greda, L.A.; Winterstein, A.; Lemes, D.L.; Heckler, V.T. Beamsteering and Beamshaping Using a Linear Antenna Array Based on Particle Swarm Optimization. IEEE Access 2019, 7, 141562–141573. [Google Scholar] [CrossRef]
- Sun, G.; Liu, Y.; Li, H.; Liang, S.; Wang, A.; Li, B. An antenna array sidelobe level reduction approach through invasive weed optimization. Int. J. Antennas Propag. 2018, 2018, 4867851–4867867. [Google Scholar] [CrossRef]
- Mohammadi Shirkolaei, M.; Ghalibafan, J. Magnetically scannable slotted waveguide antenna based on the ferrite with gain enhancement. Waves Random Complex Media 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Mohammadi Shirkolaei, M.; Dalili Oskouei, H.R.; Abbasi, M. Design of 1*4 Microstrip Antenna Array on the Human Thigh with Gain Enhancement. IETE J. Res. 2021, 1–7. [Google Scholar] [CrossRef]
Function Name | Expression | Search Space | Dim | Fmin |
---|---|---|---|---|
Sphere | [−10,10] | 30 | 0 | |
Rosenbrock | [−30,30] | 30 | 0 | |
Quartic | [−1.28,1.28] | 30 | 0+random noise | |
Ackley | [−32,32] | 30 | 0 |
Algorithm | Values of the Parameters |
---|---|
GA [13] | |
PSO [32] | |
DE [15] | |
IWO [33] | |
MOA [20] | , |
WOA [26] | |
IWOA | , |
Function ID | Statistics | GA | PSO | DE | IWO | MOA | WOA | IWOA |
---|---|---|---|---|---|---|---|---|
F1 | Best | 5.9459 × | 9.0916 | 1.5094 × | 2.5677 × | 8.091 × | 3.2727 × | 0.0000 × |
Average | 1.7310 × | 1.6365 × | 2.9594 × | 3.4267 × | 1.674 × | 1.2064 × | 0.0000 × | |
Std. | 2.5419 × | 5.2516 × | 1.1558 × | 4.7039 × | 3.7614 × | 5.2016 × | 0.0000 × | |
F2 | Best | 2.0635 × | 2.6832 × | 2.4624 × | 2.5779 × | 3.1467 × | 2.6852 × | 3.2867 × |
Average | 4.009 × | 6.3317 × | 5.2010 × | 2.6677 × | 2.4533 × | 2.7647 × | 1.2652 × | |
Std. | 1.5590 × | 3.0563 × | 3.6656 × | 0.6031 × | 2.9960 × | 0.4685 × | 2.9483 × | |
F3 | Best | 2.4553 × | 5.5778 × | 6.8942 × | 5.7910 × | 7.9499 × | 3.8572 × | 4.5898 × |
Average | 5.0547 × | 1.6257 × | 1.1957 × | 2.6554 × | 2.0486 × | 3.0396 × | 5.2412 × | |
Std. | 1.2738 × | 3.8376 × | 3.0263 × | 8.8917 × | 7.7150 × | 3.9468 × | 8.3869 × | |
F4 | Best | 3.2840 × | 1.9277 × | 2.9891 × | 3.9968 × | 1.2840 × | 7.6815 × | 8.8818 × |
Average | 7.3548 × | 2.7495 × | 4.7469 × | 5.7495 × | 5.2548 × | 4.7962 × | 8.8818 × | |
Std. | 2.1209 × | 5.7580 × | 1.0955 × | 8.5984 × | 3.1209 × | 2.158 × | 0.0000 × |
Algorithms | Best MSLL (dB) | Worst MSLL (dB) | Average MSLL (dB) | Standard Deviation (dB) |
---|---|---|---|---|
Uniform Array | −14.98 | −14.98 | −14.98 | 0 |
GA | −18.87 | −16.95 | −17.68 | 0.77 |
PSO | −20.13 | −17.86 | −18.89 | 1.32 |
DE | −20.37 | −18.16 | −19.02 | 0.98 |
IWO | −21.64 | −20.28 | −20.96 | 0.56 |
MOA | −23.52 | −21.19 | −22.21 | 1.13 |
WOA | −23.08 | −21.56 | −22.13 | 0.63 |
IMOA | −25.73 | −24.55 | −25.26 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Li, H.; Liang, G.; Zhao, L.; Yang, J.; Wei, X. Phase-Only Pattern Synthesis for Spaceborne Array Antenna Based on Improved Mayfly Optimization Algorithm. Electronics 2023, 12, 895. https://doi.org/10.3390/electronics12040895
Hu H, Li H, Liang G, Zhao L, Yang J, Wei X. Phase-Only Pattern Synthesis for Spaceborne Array Antenna Based on Improved Mayfly Optimization Algorithm. Electronics. 2023; 12(4):895. https://doi.org/10.3390/electronics12040895
Chicago/Turabian StyleHu, Hongming, Huawang Li, Guang Liang, Lulu Zhao, Jiashuo Yang, and Xiaoli Wei. 2023. "Phase-Only Pattern Synthesis for Spaceborne Array Antenna Based on Improved Mayfly Optimization Algorithm" Electronics 12, no. 4: 895. https://doi.org/10.3390/electronics12040895
APA StyleHu, H., Li, H., Liang, G., Zhao, L., Yang, J., & Wei, X. (2023). Phase-Only Pattern Synthesis for Spaceborne Array Antenna Based on Improved Mayfly Optimization Algorithm. Electronics, 12(4), 895. https://doi.org/10.3390/electronics12040895