Investigating Trace Equivalences in Information Networks
Abstract
:1. Introduction
- We provide a characterization of trace semantics and trace equivalence in information networks, and we give a computational method for computing trace equivalence in information networks.
- We conduct trace equivalence computational tasks on information networks to obtain trace-equivalent networks from the original networks, and show that these derived networks have a smaller number of nodes and edges.
- We show that conventional data mining algorithms can achieve the same or similar results on both the original networks and their trace-equivalent networks.
2. Materials and Methods
2.1. Review of Information Networks
2.2. Methods
2.2.1. Trace Semantics of Information Networks
2.2.2. Computational Method of Trace Equivalences
2.2.3. Derive Trace-Equivalent Networks
Algorithm 1: Deriving trace-equivalent network from an given network. |
3. Experiments and Discussion
3.1. Datasets
3.2. Reduction of Nodes by Trace Equivalence
3.3. Maintainability of Pathsim Algorithm
4. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van Glabbeek, R.J. The linear time-branching time spectrum. In Proceedings of the 1th International Conference on Concurrency Theory (CONCUR’90), Amsterdam, The Netherlands, 27–30 August 1990; pp. 278–297. [Google Scholar] [CrossRef]
- Clarke, E.M.; Henzinger, T.A.; Veith, H.; Bloem, R. Handbook of Model Checking; Springer: Berlin/Heidelberg, Germany, 2018; Volume 10. [Google Scholar]
- van Glabbeek, R.J. The Linear Time—Branching Time Spectrum I. In Handbook of Process Algebra; Bergstra, J., Ponse, A., Smolka, S., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2001; pp. 3–99. [Google Scholar] [CrossRef]
- van Glabbeek, R.J. The linear time-branching time spectrum II. In Proceedings of the 4th International Conference on Concurrency Theory (CONCUR’93), Hildesheim, Germany, 23–26 August 1993; pp. 66–81. [Google Scholar]
- He, H.; Wu, J.; Xiong, J. Approximate Completed Trace Equivalence of ILAHSs Based on SAS Solving. Information 2019, 10, 340. [Google Scholar] [CrossRef]
- Hoare, C. A Model for Communicating Sequential Process; Department of Computing Science Working Paper Series; University of Wollongong: Wollongong, NSW, Australia, 1980; Volume 80. [Google Scholar]
- Mazurkiewicz, A. Trace theory. In Petri Nets: Applications and Relationships to Other Models of Concurrency; Brauer, W., Reisig, W., Rozenberg, G., Eds.; Springer: Berlin/Heidelberg, Germany, 1987; pp. 278–324. [Google Scholar]
- Hoare, C.A.R. Communicating Sequential Processes. Commun. ACM 1978, 21, 666–677. [Google Scholar] [CrossRef]
- Cheval, V.; Comon-Lundh, H.; Delaune, S. Trace Equivalence Decision: Negative Tests and Non-Determinism. In Proceedings of the 18th ACM Conference on Computer and Communications Security, Chicago, IL, USA, 17–21 October 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 321–330. [Google Scholar] [CrossRef]
- Wang, C. Polynomial Algebraic Event Structure and Their Approximation and Approximate Equivalences. Ph.D. Thesis, Beijing Jiaotong University, Beijing, China, 2016. [Google Scholar]
- Baelde, D.; Delaune, S.; Hirschi, L. A Reduced Semantics for Deciding Trace Equivalence. Log. Methods Comput. Sci. 2017, 13, lmcs:3703. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Y.; Pan, S.; Zhang, M.; Jin, D.; Yu, P.S. Graph Neural Networks for Graphs with Heterophily: A Survey. arXiv 2022, arXiv:2202.07082. [Google Scholar] [CrossRef]
- Xie, Y.; Yu, B.; Lv, S.; Zhang, C.; Wang, G.; Gong, M. A survey on heterogeneous network representation learning. Pattern Recognit. 2021, 116, 107936. [Google Scholar] [CrossRef]
- Shi, C.; Yu, P.S. Recent Developments of Deep Heterogeneous Information Network Analysis. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 2973–2974. [Google Scholar] [CrossRef]
- Yang, C.; Zou, J.; Wu, J.; Xu, H.; Fan, S. Supervised contrastive learning for recommendation. Knowl.-Based Syst. 2022, 258, 109973. [Google Scholar] [CrossRef]
- Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and applications. AI Open 2020, 1, 57–81. [Google Scholar] [CrossRef]
- Yu, P.; Fu, C.; Yu, Y.; Huang, C.; Zhao, Z.; Dong, J. Multiplex Heterogeneous Graph Convolutional Network. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 2377–2387. [Google Scholar] [CrossRef]
- Wu, S.; Sun, F.; Zhang, W.; Xie, X.; Cui, B. Graph Neural Networks in Recommender Systems: A Survey. ACM Comput. Surv. 2022, 55, 1–37. [Google Scholar] [CrossRef]
- Bouritsas, G.; Frasca, F.; Zafeiriou, S.; Bronstein, M.M. Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xu, Z.; Zhang, J.; Wang, Z.; Ji, S. Self-Supervised Learning of Graph Neural Networks: A Unified Review. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 2412–2429. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Zhang, J.; Meng, Z.; King, I. MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding. In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 2331–2341. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.; Shi, C.; Hu, B.; Song, G.; Ye, Y. Heterogeneous Graph Structure Learning for Graph Neural Networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 4697–4705. [Google Scholar] [CrossRef]
- Pang, Y.; Wu, L.; Shen, Q.; Zhang, Y.; Wei, Z.; Xu, F.; Chang, E.; Long, B.; Pei, J. Heterogeneous Global Graph Neural Networks for Personalized Session-Based Recommendation. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, Tempe, AZ, USA, 21–25 February 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 775–783. [Google Scholar] [CrossRef]
- Lv, Q.; Ding, M.; Liu, Q.; Chen, Y.; Feng, W.; He, S.; Zhou, C.; Jiang, J.; Dong, Y.; Tang, J. Are We Really Making Much Progress? Revisiting, Benchmarking and Refining Heterogeneous Graph Neural Networks. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Singapore, 14–18 August 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1150–1160. [Google Scholar] [CrossRef]
- Singhal, A. Modern information retrieval: A brief overview. IEEE Data Eng. Bull. 2001, 24, 35–43. [Google Scholar]
- Ozella, L.; Price, E.; Langford, J.; Lewis, K.E.; Cattuto, C.; Croft, D.P. Association networks and social temporal dynamics in ewes and lambs. Appl. Anim. Behav. Sci. 2022, 246, 105515. [Google Scholar] [CrossRef]
- Sun, Y.; Han, J.; Yan, X.; Yu, P.S.; Wu, T. PathSim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information Networks. Proc. VLDB Endow. 2020, 4, 992–1003. [Google Scholar] [CrossRef]
- Han, H.; Zhao, T.; Yang, C.; Zhang, H.; Liu, Y.; Wang, X.; Shi, C. OpenHGNN: An Open Source Toolkit for Heterogeneous Graph Neural Network. In Proceedings of the 31st ACM International Conference on Information and Knowledge Management, Atlanta, GA, USA, 17–21 October 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 3993–3997. [Google Scholar] [CrossRef]
Notation | Explanations |
---|---|
G | an Information Network |
V | set of nodes |
E | set of edges |
O | set of node types |
R | set of edge types |
A | adjacency matrix |
node | |
edge | |
path set of node | |
trace set of node | |
trace equivalence |
Datasets | Nodes | Edges | ||||||
---|---|---|---|---|---|---|---|---|
ACM | author | paper | term | subject | paper-author | paper-paper | paper-subject | paper-term |
5959 | 3025 | 1902 | 56 | 9949 | 5343 | 3025 | 225,619 | |
DBLP | author | paper | term | venue | author-paper | paper-term | paper-venue | |
4057 | 14,328 | 7723 | 20 | 19,645 | 85,810 | 14,328 |
Datasets | RN | Ra(%) | T | Datasets | RN | Ra(%) | T |
---|---|---|---|---|---|---|---|
ACM | 1603 | 26.90 | 1.0 | DBLP | 150 | 3.70 | 1.0 |
1634 | 27.42 | 0.9 | 166 | 4.09 | 0.9 | ||
1830 | 30.71 | 0.8 | 233 | 5.74 | 0.8 | ||
2267 | 38.04 | 0.7 | 355 | 8.75 | 0.7 | ||
2642 | 44.33 | 0.6 | 503 | 12.40 | 0.6 | ||
2960 | 49.67 | 0.5 | 757 | 18.66 | 0.5 | ||
3259 | 54.69 | 0.4 | 1030 | 25.39 | 0.4 | ||
3482 | 58.43 | 0.3 | 1361 | 33.55 | 0.3 | ||
3720 | 62.42 | 0.2 | 1659 | 40.89 | 0.2 | ||
3886 | 65.21 | 0.1 | 1894 | 46.68 | 0.1 |
Datasets | Max-E | Min-E | Mean-E | T | Datasets | Max-E | Min-E | Mean-E | T |
---|---|---|---|---|---|---|---|---|---|
ACM | 0 | 0 | 0 | 1.0 | DBLP | 0 | 0 | 0 | 1.0 |
0 | 0 | 0 | 0.99 | 0 | 0 | 0 | 0.99 | ||
0 | 0 | 0 | 0.98 | 0.98 | |||||
0 | 0 | 0 | 0.97 | 0.97 | |||||
0 | 0 | 0 | 0.96 | 0.96 | |||||
0 | 0 | 0 | 0.95 | 0.95 | |||||
0.1 | 0.94 | 0.1 | 0.94 | ||||||
0.17 | 0.93 | 0.16 | 0.93 | ||||||
0.17 | 0.92 | 0.17 | 0.92 | ||||||
0.2 | 0.91 | 0.2 | 0.91 | ||||||
0.2 | 0.90 | 0.2 | 0.90 |
Datasets | TL | IC | T | Datasets | TL | IC | T |
---|---|---|---|---|---|---|---|
ACM | 60 | 1 | 0.9 | DBLP | 16 | 2 | 0.9 |
69 | 3 | 0.8 | 19 | 2 | 0.8 | ||
95 | 19 | 0.7 | 31 | 2 | 0.7 | ||
121 | 30 | 0.6 | 47 | 3 | 0.6 | ||
148 | 48 | 0.5 | 61 | 4 | 0.5 | ||
163 | 60 | 0.4 | 91 | 7 | 0.4 | ||
213 | 99 | 0.3 | 128 | 10 | 0.3 | ||
440 | 243 | 0.2 | 169 | 23 | 0.2 | ||
1232 | 740 | 0.1 | 205 | 40 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Wu, J.; Hu, W. Investigating Trace Equivalences in Information Networks. Electronics 2023, 12, 865. https://doi.org/10.3390/electronics12040865
Li R, Wu J, Hu W. Investigating Trace Equivalences in Information Networks. Electronics. 2023; 12(4):865. https://doi.org/10.3390/electronics12040865
Chicago/Turabian StyleLi, Run, Jinzhao Wu, and Wujie Hu. 2023. "Investigating Trace Equivalences in Information Networks" Electronics 12, no. 4: 865. https://doi.org/10.3390/electronics12040865
APA StyleLi, R., Wu, J., & Hu, W. (2023). Investigating Trace Equivalences in Information Networks. Electronics, 12(4), 865. https://doi.org/10.3390/electronics12040865