Noise2Clean: Cross-Device Side-Channel Traces Denoising with Unsupervised Deep Learning
Abstract
:1. Introduction
- We propose the first method that utilizes a novel U-Net-based denoising scheme to remove certain types of countermeasures for DL-based SCA attacks even in the black-box setting.
- We use a simple but efficient transfer learning technique to transfer knowledge learned from the source domain (i.e., profiling device) to the target domain (i.e., attacking device) to improve the model’s generalization ability.
- Extensive evaluation on both local datasets and publicly available datasets shows that the proposed scheme outperforms state-of-the-art DL-based denoising methods by a large margin.
2. Background and Related Works
2.1. Profiled Side-Channel Attack
2.2. Transfer Learning
2.3. Dcnns Based Denoisers
3. Methodology
3.1. DCNNs Denoiser Pre-Training
3.2. DCNNs Denoiser Fine-Tuning and SCA Attacks
Algorithm 1 DCNNs Denoiser and SCA Attacks: For the datasets and from source (i.e., profiling device) and target domains (i.e., target device), the DL models with parameters (e.g., weights, bias) |
|
4. Experimental Results
4.1. Experiment Setup
4.2. Network Architecture
4.3. Cross-Device Denoising for Local and Public Datasets
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kocher, P.; Jaffe, J.; Jun, B. Differential Power Analysis. In Advances in Cryptology—CRYPTO’ 99; Wiener, M., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1999; pp. 388–397. [Google Scholar] [CrossRef] [Green Version]
- Gandolfi, K.; Mourtel, C.; Olivier, F. Electromagnetic Analysis: Concrete Results. In Proceedings of the Cryptographic Hardware and Embedded Systems—CHES 2001, Third International Workshop, Paris, France, 14–16 May 2001; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2001; Volume 2162, pp. 251–261. [Google Scholar] [CrossRef] [Green Version]
- Maghrebi, H.; Portigliatti, T.; Prouff, E. Breaking Cryptographic Implementations Using Deep Learning Techniques. IACR Cryptol. EPrint Arch. 2016, 2016, 921. [Google Scholar]
- Cagli, E.; Dumas, C.; Prouff, E. Convolutional neural networks with data augmentation against jitter-based countermeasures. In Proceedings of the 19th International Conference on Cryptographic Hardware and Embedded Systems, Taipei, Taiwan, 25–28 September 2017; Springer: Cham, Switzerland, 2017; pp. 45–68. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Picek, S.; Heuser, A.; Bhasin, S.; Hanjalic, A. Make Some Noise. Unleashing the Power of Convolutional Neural Networks for Profiled Side-channel Analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 2019, 148–179. [Google Scholar] [CrossRef]
- Das, D.; Golder, A.; Danial, J.; Ghosh, S.; Raychowdhury, A.; Sen, S. X-DeepSCA: Cross-Device Deep Learning Side Channel Attack. In Proceedings of the 56th Annual Design Automation Conference 2019, Las Vegas, NV, USA, 2–6 June 2019; pp. 1–6. [Google Scholar]
- Zhang, F.; Shao, B.; Xu, G.; Yang, B.; Yang, Z.; Qin, Z.; Ren, K. From Homogeneous to Heterogeneous: Leveraging Deep Learning based Power Analysis across Devices. In Proceedings of the 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 20–24 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Yu, H.; Shan, H.; Panoff, M.; Jin, Y. Cross-Device Profiled Side-Channel Attacks Using Meta-Transfer Learning. In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9 December 2021; pp. 703–708. [Google Scholar] [CrossRef]
- Cao, P.; Zhang, H.; Gu, D.; Lu, Y.; Yuan, Y. AL-PA: Cross-Device Profiled Side-Channel Attack Using Adversarial Learning. In Proceedings of the 59th ACM/IEEE Design Automation Conference, San Francisco, CA, USA, 10–14 July 2022; pp. 691–696. [Google Scholar] [CrossRef]
- Zaid, G.; Bossuet, L.; Habrard, A.; Venelli, A. Methodology for Efficient CNN Architectures in Profiling Attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 2020, 1–36. [Google Scholar] [CrossRef]
- Wu, L.; Picek, S. Remove Some Noise: On Pre-processing of Side-channel Measurements with Autoencoders. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 2020, 389–415. [Google Scholar] [CrossRef]
- Thapar, D.; Alam, M.; Mukhopadhyay, D. TranSCA: Cross-Family Profiled Side-Channel Attacks using Transfer Learning on Deep Neural Networks. Cryptology ePrint Archive, Report 2020/1258. 2020. Available online: https://eprint.iacr.org/2020/1258 (accessed on 14 October 2020).
- Panoff, M.; Yu, H.; Shan, H.; Jin, Y. A Review and Comparison of AI-Enhanced Side Channel Analysis. J. Emerg. Technol. Comput. Syst. 2022, 18, 62. [Google Scholar] [CrossRef]
- Shan, H.; Zhang, B.; Zhan, Z.; Sullivan, D.; Wang, S.; Jin, Y. Invisible Finger: Practical Electromagnetic Interference Attack on Touchscreen-based Electronic Devices. In Proceedings of the 2022 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 22–26 May 2022; pp. 1246–1262. [Google Scholar] [CrossRef]
- Ge, W.; Yu, Y. Borrowing Treasures from the Wealthy: Deep Transfer Learning through Selective Joint Fine-Tuning. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Yang, Z.; Zhao, J.; Dhingra, B.; He, K.; Cohen, W.W.; Salakhutdinov, R.; LeCun, Y. Glomo: Unsupervisedly learned relational graphs as transferable representations. arXiv 2018, arXiv:1806.05662. [Google Scholar]
- Guo, Y.; Shi, H.; Kumar, A.; Grauman, K.; Rosing, T.; Feris, R. Spottune: Transfer learning through adaptive fine-tuning. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 4805–4814. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690. [Google Scholar]
- Xiao, L.; Heide, F.; Heidrich, W.; Schölkopf, B.; Hirsch, M. Discriminative transfer learning for general image restoration. IEEE Trans. Image Process. 2018, 27, 4091–4104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Bai, X.; Fan, R.; Wang, Z. Deviation-Sparse Fuzzy C-Means With Neighbor Information Constraint. IEEE Trans. Fuzzy Syst. 2019, 27, 185–199. [Google Scholar] [CrossRef]
- Tang, Y.; Pan, Z.; Pedrycz, W.; Ren, F.; Song, X. Viewpoint-Based Kernel Fuzzy Clustering with Weight Information Granules. IEEE Trans. Emerg. Top. Comput. Intell. 2022, 1–15. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehtinen, J.; Munkberg, J.; Hasselgren, J.; Laine, S.; Karras, T.; Aittala, M.; Aila, T. Noise2Noise: Learning Image Restoration without Clean Data. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; Dy, J., Krause, A., Eds.; PMLR: Cambridge MA, USA, 2018; Volume 80, pp. 2965–2974. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Xuhong, L.; Grandvalet, Y.; Davoine, F. Explicit inductive bias for transfer learning with convolutional networks. In International Conference on Machine Learning; PMLR: Cambridge MA, USA, 2018; pp. 2825–2834. [Google Scholar]
- Guo, S.; Yan, Z.; Zhang, K.; Zuo, W.; Zhang, L. Toward convolutional blind denoising of real photographs. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 1712–1722. [Google Scholar]
- Genevey-Metat, C.; Gérard, B.; Heuser, A. On What to Learn: Train or Adapt a Deeply Learned Profile? Cryptology ePrint Archive, Report 2020/952. 2020. Available online: https://eprint.iacr.org/2020/952 (accessed on 11 August 2020).
- Cao, P.; Zhang, C.; Lu, X.; Gu, D. Cross-Device Profiled Side-Channel Attack with Unsupervised Domain Adaptation. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2021, 27–56. [Google Scholar] [CrossRef]
Datasets | Platform | Nr Features | Nr Traces |
---|---|---|---|
ATXMEGA | AVRxm | 700 | 30,000 |
STM32F0 | ARM Cortex-M0 | 700 | 30,000 |
STM32F1 | ARM Cortex-M3 | 700 | 30,000 |
STM32F3 | ARM Cortex-M4 | 700 | 30,000 |
STM32F4 | ARM Cortex-M4 | 700 | 30,000 |
ASCAD | AVR | 700 | 30,000 |
Method | Scenario | Pre-Train | Fine-Tune | Model | Time | |
---|---|---|---|---|---|---|
State-of-the-art [11] | Identical | ✓ | ✗ | Autoencoder | 22 min | 136 |
This Work | Non-Identical | ✓ | ✓ (ITL) | U-Net | 15 min | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Wang, M.; Song, X.; Shan, H.; Qiu, H.; Wang, J.; Yang, K. Noise2Clean: Cross-Device Side-Channel Traces Denoising with Unsupervised Deep Learning. Electronics 2023, 12, 1054. https://doi.org/10.3390/electronics12041054
Yu H, Wang M, Song X, Shan H, Qiu H, Wang J, Yang K. Noise2Clean: Cross-Device Side-Channel Traces Denoising with Unsupervised Deep Learning. Electronics. 2023; 12(4):1054. https://doi.org/10.3390/electronics12041054
Chicago/Turabian StyleYu, Honggang, Mei Wang, Xiyu Song, Haoqi Shan, Hongbing Qiu, Junyi Wang, and Kaichen Yang. 2023. "Noise2Clean: Cross-Device Side-Channel Traces Denoising with Unsupervised Deep Learning" Electronics 12, no. 4: 1054. https://doi.org/10.3390/electronics12041054