Detection and Classification of Printed Circuit Boards Using YOLO Algorithm
Abstract
:1. Introduction
- Which type of YOLOv5 network model meets the given requirements for performing the presented task?
- Does the size of the used backbone model influence the results?
- Is there a possibility of implementing the obtained model for real purposes?
2. Materials and Methods
2.1. Dataset Description and Preparation
2.2. Methodology
Configuration of the YOLOv5 Semantic Segmentation Algorithm
3. Results and Discussion
3.1. Verification of the Network Model
- X each considered value;
- mean value of the considered population;
- N is the number of values in the considered population.
3.1.1. Results for YOLOv5n Model
3.1.2. Results for YOLOv5s Model
3.1.3. Results for YOLOv5m Model
3.1.4. Results for YOLOv5l Model
3.2. Discussion
4. Conclusions
- YOLOv5 is capable of producing high-performance models for detection, localization, and segmentation, no matter the model size (YOLOv5n, YOLOv5s, YOLOv5m or YOLOv5l), with YOLOv5s providing results with the lowest ;
- For the conditions present in the conducted research, the backbone of the model had no influence;
- YOLOv5 shows satisfactory classification performance, with F1 scores above 0.99, indicating possible use for sorting in production environments.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AHE | Adaptive Histogram Equalization |
CLAHE | Contrast Limited Adaptive Histogram Equalization |
CT | Computed Tomography |
CV | Cross Validation |
FN | False Negative |
FP | False Positive |
FPN | Feature Pyramid Network |
IoU | Intersection Over Union |
IoUt | Intersection Over Union Threshold |
mAP | Mean Average Precision |
ML | Machine Learning |
ONNX | Open Neural Network Exchange |
PCB | Printed Circuit Board |
TP | True Positive |
TN | True Negative |
YOLOv5 | You-Only-Look-Once version 5 |
YOLOv5n | You-Only-Look-Once version 5—nano |
YOLOv5s | You-Only-Look-Once version 5—small |
YOLOv5m | You-Only-Look-Once version 5—medium |
YOLOv5l | You-Only-Look-Once version 5—large |
Appendix A
References
- Pandey, G.; Vora, A. Open electronics for medical devices: State-of-art and unique advantages. Electronics 2019, 8, 1256. [Google Scholar] [CrossRef] [Green Version]
- Li, E.P.; Wei, X.C.; Cangellaris, A.C.; Liu, E.X.; Zhang, Y.J.; D’amore, M.; Kim, J.; Sudo, T. Progress review of electromagnetic compatibility analysis technologies for packages, printed circuit boards, and novel interconnects. IEEE Trans. Electromagn. Compat. 2010, 52, 248–265. [Google Scholar]
- Patil, T.; Rebaioli, L.; Fassi, I. Cyber-physical systems for end-of-life management of printed circuit boards and mechatronics products in home automation: A review. Sustain. Mater. Technol. 2022, 32, e00422. [Google Scholar] [CrossRef]
- Yang, Y.; Dorn-Gomba, L.; Rodriguez, R.; Mak, C.; Emadi, A. Automotive power module packaging: Current status and future trends. IEEE Access 2020, 8, 160126–160144. [Google Scholar] [CrossRef]
- Archambeault, B.; Brench, C.; Connor, S. Review of printed-circuit-board level EMI/EMC issues and tools. IEEE Trans. Electromagn. Compat. 2010, 52, 455–461. [Google Scholar] [CrossRef]
- Shamkhalichenar, H.; Bueche, C.J.; Choi, J.W. Printed circuit board (PCB) technology for electrochemical sensors and sensing platforms. Biosensors 2020, 10, 159. [Google Scholar] [CrossRef]
- Christoe, M.J.; Han, J.; Kalantar-Zadeh, K. Telecommunications and data processing in flexible electronic systems. Adv. Mater. Technol. 2020, 5, 1900733. [Google Scholar] [CrossRef]
- Alam, M.A.; Azarian, M.H.; Pecht, M.G. Embedded capacitors in printed wiring board: A technological review. J. Electron. Mater. 2012, 41, 2286–2303. [Google Scholar] [CrossRef]
- LaDou, J. Printed circuit board industry. Int. J. Hyg. Environ. Health 2006, 209, 211–219. [Google Scholar] [CrossRef]
- Huang, K.; Guo, J.; Xu, Z. Recycling of waste printed circuit boards: A review of current technologies and treatment status in China. J. Hazard. Mater. 2009, 164, 399–408. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, B.; Gao, Y.; Xu, Z. An automatic sorting system for electronic components detached from waste printed circuit boards. Waste Manag. 2022, 137, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, T.; Zhang, Y.; Ren, M. Research on PCB defect detection based on YOLOv3 network. In Proceedings of the International Conference on Cloud Computing, Performance Computing, and Deep Learning (CCPCDL 2022), Wuhan, China, 11–13 March 2022; Volume 12287, pp. 39–46. [Google Scholar]
- Ling, Z.; Zhang, A.; Ma, D.; Shi, Y.; Wen, H. Deep Siamese Semantic Segmentation Network for PCB Welding Defect Detection. IEEE Trans. Instrum. Meas. 2022, 71, 5006511. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Cloutier, S.G. End-to-end deep learning framework for printed circuit board manufacturing defect classification. Sci. Rep. 2022, 12, 12559. [Google Scholar] [CrossRef] [PubMed]
- Fabrice, N.; Lee, J.J. SMD Detection and Classification Using YOLO Network Based on Robust Data Preprocessing and Augmentation Techniques. J. Multimed. Inf. Syst. 2021, 8, 211–220. [Google Scholar] [CrossRef]
- Yoon, H.; Lee, J. PCB Component Classification Algorithm Based on YOLO Network for PCB Inspection. J. Korea Multimed. Soc. 2021, 24, 988–999. [Google Scholar]
- Huang, S.; Wang, Z.; Zhou, J.; Lu, J. Planning Irregular Object Packing via Hierarchical Reinforcement Learning. IEEE Robot. Autom. Lett. 2022, 8, 81–88. [Google Scholar] [CrossRef]
- Mohammed, M.Q.; Kwek, L.C.; Chua, S.C.; Al-Dhaqm, A.; Nahavandi, S.; Eisa, T.A.E.; Miskon, M.F.; Al-Mhiqani, M.N.; Ali, A.; Abaker, M.; et al. Review of Learning-Based Robotic Manipulation in Cluttered Environments. Sensors 2022, 22, 7938. [Google Scholar] [CrossRef]
- Wilts, H.; Garcia, B.R.; Garlito, R.G.; Gómez, L.S.; Prieto, E.G. Artificial intelligence in the sorting of municipal waste as an enabler of the circular economy. Resources 2021, 10, 28. [Google Scholar] [CrossRef]
- Yang, M.; Kumar, P.; Bhola, J.; Shabaz, M. Development of image recognition software based on artificial intelligence algorithm for the efficient sorting of apple fruit. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 322–330. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, R.; Gao, F.; Wang, W.; Fu, L.; Li, R. Segmentation of abnormal leaves of hydroponic lettuce based on DeepLabV3+ for robotic sorting. Comput. Electron. Agric. 2021, 190, 106443. [Google Scholar] [CrossRef]
- Li, X. SF EXPRESS Automated Robotic Sorting System Based on Machine Learning. In Proceedings of the 2022 International Conference on Urban Planning and Regional Economy (UPRE 2022), Online, 22–24 April 2022; pp. 92–98. [Google Scholar]
- Erkinay Ozdemir, M.; Ali, Z.; Subeshan, B.; Asmatulu, E. Applying machine learning approach in recycling. J. Mater. Cycles Waste Manag. 2021, 23, 855–871. [Google Scholar] [CrossRef]
- Kumar, N.M.; Mohammed, M.A.; Abdulkareem, K.H.; Damasevicius, R.; Mostafa, S.A.; Maashi, M.S.; Chopra, S.S. Artificial intelligence-based solution for sorting COVID related medical waste streams and supporting data-driven decisions for smart circular economy practice. Process. Saf. Environ. Prot. 2021, 152, 482–494. [Google Scholar] [CrossRef]
- Ku, Y.; Yang, J.; Fang, H.; Xiao, W.; Zhuang, J. Deep learning of grasping detection for a robot used in sorting construction and demolition waste. J. Mater. Cycles Waste Manag. 2021, 23, 84–95. [Google Scholar] [CrossRef]
- Rautela, R.; Arya, S.; Vishwakarma, S.; Lee, J.; Kim, K.H.; Kumar, S. E-waste management and its effects on the environment and human health. Sci. Total Environ. 2021, 773, 145623. [Google Scholar] [CrossRef]
- Ahirwar, R.; Tripathi, A.K. E-waste management: A review of recycling process, environmental and occupational health hazards, and potential solutions. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100409. [Google Scholar] [CrossRef]
- Shittu, O.S.; Williams, I.D.; Shaw, P.J. Global E-waste management: Can WEEE make a difference? A review of e-waste trends, legislation, contemporary issues and future challenges. Waste Manag. 2021, 120, 549–563. [Google Scholar] [CrossRef]
- Chen, J.; Huang, S.; BalaMurugan, S.; Tamizharasi, G. Artificial intelligence based e-waste management for environmental planning. Environ. Impact Assess. Rev. 2021, 87, 106498. [Google Scholar] [CrossRef]
- Yu, K.H.; Zhang, Y.; Li, D.; Montenegro-Marin, C.E.; Kumar, P.M. Environmental planning based on reduce, reuse, recycle and recover using artificial intelligence. Environ. Impact Assess. Rev. 2021, 86, 106492. [Google Scholar] [CrossRef]
- Jocher, G.; Nishimura, K.; Mineeva, T.; Vilariño, R. yolov5. Available online: https://zenodo.org/record/7347926#.Y9XPmq1BxPY (accessed on 1 December 2022).
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo algorithm developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Nepal, U.; Eslamiat, H. Comparing YOLOv3, YOLOv4 and YOLOv5 for autonomous landing spot detection in faulty UAVs. Sensors 2022, 22, 464. [Google Scholar] [CrossRef]
- Sozzi, M.; Cantalamessa, S.; Cogato, A.; Kayad, A.; Marinello, F. Automatic bunch detection in white grape varieties using YOLOv3, YOLOv4, and YOLOv5 deep learning algorithms. Agronomy 2022, 12, 319. [Google Scholar] [CrossRef]
- AdamByerly. Micro-pcb Images Dataset. 2021. Available online: https://www.kaggle.com/datasets/frettapper/micropcb-images (accessed on 1 December 2022).
- Morbekar, A.; Parihar, A.; Jadhav, R. Crop disease detection using YOLO. In Proceedings of the 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020; pp. 1–5. [Google Scholar]
- Saponara, S.; Elhanashi, A. Impact of Image Resizing on Deep Learning Detectors for Training Time and Model Performance. In Proceedings of the International Conference on Applications in Electronics Pervading Industry, Environment and Society, Genova, Italy, 26–27 September 2022; pp. 10–17. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; NanoCode012; Kwon, Y.; TaoXie; Fang, J.; imyhxy; Michael, K.; et al. ultralytics/yolov5: v6. 1-TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference. Available online: https://zenodo.org/record/6222936 (accessed on 1 December 2022).
- Roboflow (version 1.0) Give Your Software the Sense of Sight. 2021. Available online: https://roboflow.com/ (accessed on 1 December 2022).
- Krogh, A.; Vedelsby, J. Neural network ensembles, cross validation, and active learning. Adv. Neural Inf. Process. Syst. 1994, 7, 231–238. [Google Scholar]
- Kim, K.; Kang, S.; Lee, J.; Kim, J. Vision Based Bin Picking for Industrial Robot. Adv. Sci. Technol. Lett. 2014, 64, 14–17. [Google Scholar]
- Rennie, C.; Shome, R.; Bekris, K.E.; De Souza, A.F. A dataset for improved rgbd-based object detection and pose estimation for warehouse pick-and-place. IEEE Robot. Autom. Lett. 2016, 1, 1179–1185. [Google Scholar] [CrossRef]
- Deneubourg, J.L.; Goss, S.; Franks, N.; Sendova-Franks, A.; Detrain, C.; Chrétien, L. The dynamics of collective sorting robot-like ants and ant-like robots. In Proceedings of the First International Conference on Simulation of Adaptive Behavior; MIT Press: Cambridge, MA, USA, 14 February 1991; pp. 356–365.
- Hafiz, A.M.; Bhat, G.M. A survey on instance segmentation: State of the art. Int. J. Multimed. Inf. Retr. 2020, 9, 171–189. [Google Scholar] [CrossRef]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9157–9166. [Google Scholar]
- Khasawneh, N.; Fraiwan, M.; Fraiwan, L. Detection of K-complexes in EEG signals using deep transfer learning and YOLOv3. Clust. Comput. 2022. [Google Scholar] [CrossRef]
- Kateb, F.A.; Monowar, M.M.; Hamid, M.; Ohi, A.Q.; Mridha, M.F. FruitDet: Attentive feature aggregation for real-time fruit detection in orchards. Agronomy 2021, 11, 2440. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, H.; Nie, Z. Safety helmet detection based on YOLOv5. In Proceedings of the 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA), Shenyang, China, 22–24 January 2021; pp. 6–11. [Google Scholar]
- Wu, T.H.; Wang, T.W.; Liu, Y.Q. Real-time vehicle and distance detection based on improved yolo v5 network. In Proceedings of the 2021 3rd World Symposium on Artificial Intelligence (WSAI), Guangzhou, China, 18–20 June 2021; pp. 24–28. [Google Scholar]
- Chen, Z.; Wu, R.; Lin, Y.; Li, C.; Chen, S.; Yuan, Z.; Chen, S.; Zou, X. Plant disease recognition model based on improved YOLOv5. Agronomy 2022, 12, 365. [Google Scholar] [CrossRef]
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and flexible image augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef] [Green Version]
- Glučina, M.; Baressi Šegota, S.; Anđelić, N.; Car, Z. Automated Detection and Classification of Returnable Packaging Based on YOLOV4 Algorithm. Appl. Sci. 2022, 12, 11131. [Google Scholar] [CrossRef]
- Francies, M.L.; Ata, M.M.; Mohamed, M.A. A robust multiclass 3D object recognition based on modern YOLO deep learning algorithms. Concurr. Comput. Pract. Exp. 2022, 34, e6517. [Google Scholar] [CrossRef]
- Chen, K.; Li, H.; Li, C.; Zhao, X.; Wu, S.; Duan, Y.; Wang, J. An Automatic Defect Detection System for Petrochemical Pipeline Based on Cycle-GAN and YOLO v5. Sensors 2022, 22, 7907. [Google Scholar] [CrossRef] [PubMed]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef] [PubMed]
Microcontroller Class | Number of Images | Applied Dataset Generation Methods |
---|---|---|
Raspberry Pi A+ | 1300 images, 100 for each class | wide left rotation, shallow left rotation, neutral rotation, shallow right rotation, wide right rotation, 12 inches left of the camera position, 6 inches left of the camera position, centered horizontally relative to the camera, 6 inches right of the camera position, 12 inches right of the camera position |
Arduino Mega 2560 (Blue) | ||
Arduino Mega 2560 (Black) | ||
Arduino Mega 2560 (Black and Yellow) | ||
Arduino Due | ||
Beaglebone Black | ||
Arduino Uno (Green) | ||
Raspberry Pi 3 B+ | ||
Raspberry Pi 1 B+ | ||
Arduino Uno Camera Shield | ||
Arduino Uno (Black) | ||
Arduino Uno WiFi Shield | ||
Arduino Leonardo |
Weights | Network Model | Hyperparameters | Epochs | Batch Size | Image Size | Patience | Intersection over Union Threshold |
---|---|---|---|---|---|---|---|
yolov5n-seg | yolov5n-seg | lr0: 0.01 lrf: 0.01 momentum: 0.937 weight_decay: 0.0005 | 1000 | 30 | 640 × 640 | 100 | 0.6 |
yolov5s-seg | yolov5s-seg | ||||||
yolov5m-seg | yolov5m-seg | ||||||
yolov5l-seg | yolov5l-seg |
YOLOv5n | YOLOv5s | YOLOv5m | YOLOv5l | |
---|---|---|---|---|
depth_multiplier | 0.33 | 0.33 | 0.67 | 1.0 |
width_multiplier | 0.25 | 0.5 | 0.75 | 1.0 |
Method Applied | Value | |
---|---|---|
1 | hue augmentation (fraction) | 0.015 |
2 | saturation augmentation (fraction) | 0.7 |
3 | value augmentation (fraction) | 0.4 |
4 | rotation | ±0.15 |
5 | translation | ± 0.1 |
6 | scale | ±0.5 |
7 | flip left-right (probability) | 0.5 |
8 | mosaic (probability) | 1.0 |
9 | blur with a probability of applying the transform 0.5, with maximum Gaussian kernel size of 3 and 7 | |
10 | median blur parameters were set up identically as blur | |
11 | contrast limited adaptive histogram equalization (CLAHE) with the probability of 0.01 262 and upper threshold value for contrast limiting from 1 to 4.0 and tile grid size 8 × 8. |
Fold | Early Stopping at | Precision (B) | Recall (B) | mAP (B) | Precision (M) | Recall (M) | mAP (M) | F1-Score (B) | F1-Score (M) |
---|---|---|---|---|---|---|---|---|---|
1 | 949 | 0.997 | 0.996 | 0.994 | 0.997 | 0.996 | 0.995 | 0.997 | 0.997 |
2 | 360 | 0.993 | 0.995 | 0.992 | 0.993 | 0.995 | 0.992 | 0.994 | 0.994 |
3 | 630 | 0.997 | 0.994 | 0.991 | 0.997 | 0.994 | 0.991 | 0.995 | 0.995 |
4 | 368 | 0.996 | 1 | 0.993 | 0.996 | 1 | 0.993 | 0.998 | 0.998 |
5 | 503 | 0.996 | 0.996 | 0.990 | 0.996 | 0.996 | 0.990 | 0.996 | 0.996 |
0.995 | 0.996 | 0.987 | 0.995 | 0.996 | 0.992 | 0.995 | 0.995 | ||
±0.002 | ±0.002 | ±0.010 | ±0.002 | ±0.002 | ±0.001 | ±0.001 | ±0.001 |
Fold | Early Stopping at | Precision (B) | Recall (B) | mAP (B) | Precision (M) | Recall (M) | mAP (M) | F1-Score (B) | F1-Score (M) |
---|---|---|---|---|---|---|---|---|---|
1 | 964 | 0.996 | 0.996 | 0.994 | 0.996 | 0.996 | 0.995 | 0.996 | 0.996 |
2 | 297 | 0.993 | 0.995 | 0.990 | 0.993 | 0.995 | 0.989 | 0.994 | 0.994 |
3 | 273 | 0.996 | 0.996 | 0.990 | 0.996 | 0.996 | 0.990 | 0.996 | 0.996 |
4 | 540 | 0.996 | 1 | 0.994 | 0.996 | 1 | 0.994 | 0.998 | 0.998 |
5 | 424 | 0.996 | 0.996 | 0.991 | 0.996 | 0.996 | 0.990 | 0.996 | 0.996 |
0.997 | 0.996 | 0.992 | 0.996 | 0.996 | 0.991 | 0.996 | 0.996 | ||
±0.001 | ±0.001 | ±0.001 | ±0.001 | ±0.001 | ±0.002 | ±0.001 | ±0.001 |
Fold | Early Stopping at | Precision (B) | Recall (B) | mAP (B) | Precision (M) | Recall (M) | mAP (M) | F1-Score (B) | F1-Score (M) |
---|---|---|---|---|---|---|---|---|---|
1 | 1000 | 0.997 | 0.998 | 0.995 | 0.997 | 0.998 | 0.995 | 0.997 | 0.997 |
2 | 331 | 0.973 | 0.988 | 0.989 | 0.973 | 0.988 | 0.991 | 0.980 | 0.980 |
3 | 490 | 0.993 | 0.984 | 0.990 | 0.993 | 0.984 | 0.991 | 0.989 | 0.989 |
4 | 583 | 0.996 | 1 | 0.994 | 0.996 | 1 | 0.993 | 0.998 | 0.998 |
5 | 506 | 0.996 | 0.996 | 0.990 | 0.996 | 0.996 | 0.989 | 0.996 | 0.996 |
0.991 | 0.993 | 0.991 | 0.991 | 0.993 | 0.992 | 0.992 | 0.992 | ||
±0.010 | ±0.006 | ±0.002 | ±0.010 | ±0.006 | ±0.002 | ±0.007 | ±0.007 |
Fold | Early Stopping at | Precision (B) | Recall (B) | mAP (B) | Precision (M) | Recall (M) | mAP (M) | F1-Score (B) | F1-Score (M) |
---|---|---|---|---|---|---|---|---|---|
1 | 1000 | 0.997 | 0.997 | 0.995 | 0.997 | 0.997 | 0.995 | 0.997 | 0.997 |
2 | 440 | 0.992 | 0.995 | 0.990 | 0.992 | 0.995 | 0.988 | 0.994 | 0.994 |
3 | 411 | 0.928 | 0.931 | 0.987 | 0.928 | 0.931 | 0.988 | 0.929 | 0.929 |
4 | 339 | 0.994 | 0.993 | 0.993 | 0.994 | 0.993 | 0.993 | 0.993 | 0.993 |
5 | 547 | 0.996 | 0.996 | 0.989 | 0.996 | 0.996 | 0.990 | 0.996 | 0.996 |
0.981 | 0.982 | 0.991 | 0.981 | 0.982 | 0.991 | 0.981 | 0.981 | ||
±0.030 | ±0.029 | ±0.002 | ±0.030 | ±0.028 | ±0.002 | ±0.029 | ±0.029 |
YOLOv5 Model | Memory Size in Kilobytes [KB] | Number of Layers | Number of Parameters | Mean Inference Speed in Milliseconds [ms] |
---|---|---|---|---|
YOLOv5n | 4079 | 165 | 1,895,986 | 12.575 |
YOLOv5 | 29,481 | 165 | 7,430,786 | 11.175 |
YOLOv5m | 85,242 | 220 | 21,700,850 | 16.225 |
YOLOv5l | 186,171 | 275 | 47,533,602 | 20.651 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glučina, M.; Anđelić, N.; Lorencin, I.; Car, Z. Detection and Classification of Printed Circuit Boards Using YOLO Algorithm. Electronics 2023, 12, 667. https://doi.org/10.3390/electronics12030667
Glučina M, Anđelić N, Lorencin I, Car Z. Detection and Classification of Printed Circuit Boards Using YOLO Algorithm. Electronics. 2023; 12(3):667. https://doi.org/10.3390/electronics12030667
Chicago/Turabian StyleGlučina, Matko, Nikola Anđelić, Ivan Lorencin, and Zlatan Car. 2023. "Detection and Classification of Printed Circuit Boards Using YOLO Algorithm" Electronics 12, no. 3: 667. https://doi.org/10.3390/electronics12030667