A Buck-Boost Converter with Extended Duty-Cycle Range in the Buck Voltage Region for Renewable Energy Sources
Abstract
:1. Introduction
2. Analysis and Principle of Operation
Analysis in CCM
3. Analysis and Design of the Extended-Buck DC-DC Converter
3.1. Inductor and Capacitor Design
3.2. Semiconductor Voltage and Current Stress
3.3. Comparative Study
4. Simulation Results
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Vi | input DC voltage to the converter, V |
δ | duty cycle |
Ts | switching period |
L1, L2 | inductance of inductor(s), Henry |
C1, C2 | capacitance of capacitor(s), Farad |
D1, D2, D3 | diodes |
Δt1 | capacitor discharge time |
Ro | load resistance, Ohm |
Sw | switch (MOSFET) |
Vo | regulated output DC voltage, V |
ΔVC1, ΔVC2 | peak-to-peak capacitor(s) ripple voltage, V |
f | switching frequency, Hz |
PO | output power, W |
ISW | RMS switch current, A |
ΔQ | charge variation |
IL1, IL2 | current through inductor(s), A |
VD1, VD2, VD3 | voltage across the diodes, V |
VT | voltage stress on switch, V |
References
- Hossain, M.Z.; Rahim, N.A.; Selvaraj, J. Recent progress and development on power DC-DC converter topology, control, design and applications: A review. Renew. Sustain. Energy Rev. 2018, 81 Pt 1, 205–230. [Google Scholar] [CrossRef]
- Kjaer, S.B.; Pedersen, J.K.; Blaabjerg, F. Power inverter topologies for photovoltaic modules-a review. In Proceedings of the Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No. 02CH37344), Pittsburgh, PA, USA, 13–18 October 2002; Volume 2, pp. 782–788. [Google Scholar]
- Murillo-Yarce, D.; Restrepo, C.; Lamar, D.G.; Hernando, M.M.; Sebastián, J. Study of Multiple Discontinuous Conduction Modes in SEPIC, Ćuk, and Zeta Converters. Electronics 2022, 11, 3744. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Pires, V.F.; Foito, D.; Cordeiro, A. A DC–DC Converter With Quadratic Gain and Bidirectional Capability for Batteries/Supercapacitors. IEEE Trans. Ind. Appl. 2018, 54, 274–285. [Google Scholar] [CrossRef]
- Hattori, S.; Eto, H.; Kurokawa, F. High Power Density Battery Charger for Plug-In Micro EV. Int. J. Renew. Energy Res. 2018, 8, 1006–1015. [Google Scholar]
- Raghavendra, K.V.G.; Zeb, K.; Muthusamy, A.; Krishna, T.N.V.; Kumar, S.V.S.V.P.; Kim, D.-H.; Kim, M.-S.; Cho, H.-G.; Kim, H.-J. A Comprehensive Review of DC–DC Converter Topologies and Modulation Strategies with Recent Advances in Solar Photovoltaic Systems. Electronics 2020, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Paragond, L.; Kurian, C.; Singh, B.; Jyothi, A. Simulation and Control of DC/DC Converter for MPPT Based Hybrid PV/Wind Power System. Int. J. Renew. Energy Res. 2014, 4, 801–809. [Google Scholar]
- Tofoli, F.L.; de Castro Pereira, D.; de Paula, W.J.; de Sousa Oliveira Junior, D. Survey on non-isolated high-voltage step-up DC-DC topologies based on the boost converter. IET Power Electron. 2015, 8, 2044–2057. [Google Scholar] [CrossRef] [Green Version]
- Dadras, M.; Farrokhifar, M. A High Performance DC/DC Converter Application to Obtain the Maximum Output Power of Solar Cells. Int. J. Renew. Energy Res. 2015, 5, 766–772. [Google Scholar]
- Williams, B.W. DC-to-DC converters with continuous input and output power. IEEE Trans. Power Electron. 2013, 28, 2307–2316. [Google Scholar] [CrossRef]
- Pires, V.F.; Foito, D.; Silva, J.F. A single switch hybrid DC/DC converter with extended static gain for photovoltaic applications. Electr. Power Syst. Res. 2017, 146, 228–235. [Google Scholar] [CrossRef]
- Kumar, R.; Kannan, R.; Singh, N.S.S.; Abro, G.E.M.; Mathur, N.; Baba, M. An Efficient Design of High Step-Up Switched Z-Source (HS-SZSC) DC-DC Converter for Grid-Connected Inverters. Electronics 2022, 11, 2440. [Google Scholar] [CrossRef]
- Gholizadeh, H.; Ben-Brahim, L. A New Non-Isolated High-Gain Single-Switch DC–DC Converter Topology with a Continuous Input Current. Electronics 2022, 11, 2900. [Google Scholar] [CrossRef]
- Abdullah, A.; Al-Hindaw, M.; Al-Turki, Y.; Mandal, K.; Giaouris, D.; Banerjee, S.; Voutetakis, S.; Papadopoulou, S. Stability of a boost converter fed from photovoltaic source. Sol. Energy 2013, 98 Pt C, 458–471. [Google Scholar]
- Son, H.-S.; Kim, J.-K.; Lee, J.-B.; Moon, S.-S.; Park, J.-H.; Lee, S.-H. A New Buck–Boost Converter With Low-Voltage Stress and Reduced Conducting Components. IEEE Trans. Ind. Electron. 2017, 64, 7030–7038. [Google Scholar] [CrossRef]
- Chen, J.; Maksimovic, D.; Erickson, R.W. Analysis and design of a low-stress buck boost converter in universal-input PFC applications. IEEE Trans. Power Electron. 2006, 21, 320–329. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, D.Y.; Lee, F.C. An experimental comparison of conducted EMI emissions between a zero-voltage transition circuit and a hard-switching circuit. In Proceedings of the PESC Record. 27th Annual IEEE Power Electronics Specialists Conference (PESC’96), Baveno, Italy, 23–27 June 1996; pp. 1992–1997. [Google Scholar]
- Kircher, D.; Pommerenke, D.J. EMC Analysis of the Inverting Boost/Buck Converter Topology. Electronics 2022, 11, 3388. [Google Scholar] [CrossRef]
- Li, Q.; Wolfs, P. A Review of the Single Phase Photovoltaic Module Integrated Converter Topologies With Three Different DC Link Configurations. IEEE Trans. Power Electron. 2008, 23, 1320–1333. [Google Scholar]
- Kang, F. Modified multilevel inverter employing half- and full-bridge cells with cascade transformer and its extension to photovoltaic power generation. Electr. Power Syst. Res. 2010, 80, 1437–1445. [Google Scholar] [CrossRef]
- Haroun, R.; El Aroudi, A.; Cid-Pastor, A.; Garcia, G.; Olalla, C.; Martínez-Salamero, L. Impedance Matching in Photovoltaic Systems Using Cascaded Boost Converters and Sliding-Mode Control. IEEE Trans. Power Electron. 2015, 30, 3185–3199. [Google Scholar] [CrossRef]
- Islam, M.; Mekhilef, S. An improved transformerless grid connected photovoltaic inverter with reduced leakage current. Energy Convers. Manag. 2014, 88, 854–862. [Google Scholar] [CrossRef]
- Liu, H.; Li, F.; Ai, J. A Novel High Step-Up Dual Switches Converter With Coupled Inductor and Voltage Multiplier Cell for a Renewable Energy System. IEEE Trans. Power Electron. 2016, 31, 4974–4983. [Google Scholar] [CrossRef]
- Alonge, F.; Busacca, A.; Calabretta, M.; D’Ippolito, F.; Fagiolini, A.; Garraffa, G.; Messina, A.A.; Sferlazza, A.; Stivala, S. Nonlinear Robust Control of a Quadratic Boost Converter in a Wide Operation Range, Based on Extended Linearization Method. Electronics 2022, 11, 2336. [Google Scholar] [CrossRef]
- Zhu, M.; Luo, F.L. Development of Voltage Lift Technique on Double-Output Transformerless DC-DC Converter. In Proceedings of the IECON 2007—33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 5–8 November 2007; pp. 1983–1988. [Google Scholar]
- Pires, V.; Cordeiro, A.; Foito, D.; Silva, J. High Step-Up DC–DC Converter for Fuel Cell Vehicles Based on Merged Quadratic Boost–Ćuk. IEEE Trans. Veh. Technol. 2019, 68, 7521–7530. [Google Scholar] [CrossRef]
- Haider, Z.; Ulasyar, A.; Khattak, A.; Zad, H.S.; Mohammad, A.; Alahmadi, A.A.; Ullah, N. Development and Analysis of a Novel High-Gain CUK Converter Using Voltage-Multiplier Units. Electronics 2022, 11, 2766. [Google Scholar] [CrossRef]
- Gu, Y.; Li, W.; Zhao, Y.; Yang, B.; Li, C.; He, X. Transformerless Inverter With Virtual DC Bus Concept for Cost-Effective Grid-Connected PV Power Systems. IEEE Trans. Power Electron. 2013, 28, 793–805. [Google Scholar] [CrossRef]
- Azri, M.; Rahim, N.A.; Halim, W.A. A Highly Efficient Single-phase Transformerless H-bridge Inverter for Reducing Leakage Ground Current in Photovoltaic Grid-connected System. Electr. Power Compon. Syst. 2015, 43, 928–938. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Lai, J.-S.; Qian, H.; Hutchens, C. High-Efficiency MOSFET Inverter with H6-Type Configuration for Photovoltaic Nonisolated AC-Module Applications. IEEE Trans. Power Electron. 2011, 26, 1253–1260. [Google Scholar] [CrossRef]
- Rosas-Caro, J.C.; Ramirez, J.M.; Peng, F.Z.; Valderrabano, A. A DC-DC multilevel boost converter. IET Power Electron. 2010, 3, 129–137. [Google Scholar] [CrossRef]
- Addula, S.R.; Mahalingam, P. Coupled Inductor Based Soft Switched Interleaved DC-DC Converter for PV Applications. Int. J. Renew. Energy Res. 2016, 6, 361–374. [Google Scholar]
- Ravyts, S.; Vecchia, M.D.; Zwysen, J.; Van den Broeck, G.; Driesen, J. Study on a cascaded DC-DC converter for use in building-integrated photovoltaics. In Proceedings of the 2018 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 8–9 February 2018. [Google Scholar]
- Mitsui, K.; Sato, T.; Nishijima, K.; Nabeshima, T. LLC converter combined with switched capacitor for high voltage applications. In Proceedings of the 2013 International Conference on Renewable Energy Research and Applications (ICRERA), Madrid, Spain, 20–23 October 2013; pp. 1013–1017. [Google Scholar]
- Liu, H.; Hu, H.; Wu, H.; Xing, Y.; Batarseh, I. Overview of High-Step-Up Coupled-Inductor Boost Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 689–704. [Google Scholar] [CrossRef]
- Pires, V.F.; Foito, D.; Cordeiro, A.; Silva, J.F. A Single-Switch DC/DC Buck-Boost Converter with Extended Output Voltage. In Proceedings of the 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 14–17 October 2018; pp. 791–796. [Google Scholar] [CrossRef]
- Seguel, J.L.; Seleme, S.I., Jr.; Morais, L.M.F. Comparative Study of Buck-Boost, SEPIC, Cuk and Zeta DC-DC Converters Using Different MPPT Methods for Photovoltaic Applications. Energies 2022, 15, 7936. [Google Scholar] [CrossRef]
- Kano, F.; Kasai, Y.; Kimura, H.; Sagawa, K.; Haruna, J.; Funato, H. Buck-Boost-Type MPPT Circuit Suitable for Vehicle-Mounted Photovoltaic Power Generation. IEEJ Trans. Electr. Electron. Eng. 2021, 16, 1229–1238. [Google Scholar] [CrossRef]
- Shaw, P.; Siddique, M.D.; Mekhilef, S.; Iqbal, A. A new family of high gain boost DC-DC converters with reduced switch volt-age stress for renewable energy sources. Int. J. Circ. Theor. Appl. 2022, 1–21. [Google Scholar] [CrossRef]
- Khubchandani, V.; Veerachary, M. Extended Bucking Range Fifth-Order Buck-Boost Converter. In Proceedings of the IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 16–19 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Mashinchi Maheri, H.; Vinnikov, D.; Chub, A.; Sidorov, V.; Liivik, E. Impact of Transformer Turns Ratio on the Power Losses and Efficiency of the Wide Range Isolated Buck–Boost Converter for Photovoltaic Applications. Energies 2020, 13, 5645. [Google Scholar] [CrossRef]
- Zhang, G.; Yuan, J.; Yu, S.S.; Zhang, N.; Wang, Y.; Zhang, Y. Advanced four-mode-modulation-based four-switch non-inverting buck–boost converter with extra operation zone. IET Power Electron. 2020, 13, 2049–2059. [Google Scholar] [CrossRef]
- Mahmood, A.; Zaid, M.; Ahmad, J.; Khan, M.A.; Khan, S.; Sifat, Z.; Lin, C.H.; Sarwar, A.; Tariq, M.; Alamri, B. A Non-Inverting High Gain DC-DC Converter with Continuous Input Current. IEEE Access 2021, 9, 54710–54721. [Google Scholar] [CrossRef]
- Bertoluzzo, M.; Bignucolo, F.; Bullo, M.; Diantini, M.; Dughiero, F.; Lancerin, M.; Sieni, E.; Vinante, M.; Zordan, M. A buck-boost DC-DC converter for single module photovoltaic application to vehicle recharge. In Proceedings of the IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padua, Italy, 25–28 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Sarwar, S.; Javed, M.Y.; Jaffery, M.H.; Ashraf, M.S.; Naveed, M.T.; Hafeez, M.A. Modular Level Power Electronics (MLPE) Based Distributed PV System for Partial Shaded Conditions. Energies 2022, 15, 4797. [Google Scholar] [CrossRef]
- Ahmad, J.; Sidique, M.; Sarwar, A.; Lin, C.; Iqbal, A. A high gain noninverting DC–DC converter with low voltage stress for industrial applications. Int. J. Circuit Theory Appl. 2021, 49, 4212–4230. [Google Scholar] [CrossRef]
- Abdel-Rahim, O.; Chub, A.; Blinov, A.; Vinnikov, D. New High-Gain Non-Inverting Buck-Boost Converter. In Proceedings of the IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
Topologies | Classic | [37] | [41] | [48] | Proposed | |
---|---|---|---|---|---|---|
Items | ||||||
Voltage gain | ||||||
Buck range | 0.50 | 0.38 | 0.66 | 0.25 | 0.62 | |
Number of switches | 1 | 1 | 2 | 3 | 1 | |
Number of diodes | 1 | 3 | 5 | 2 | 3 | |
Number of inductors | 1 | 2 | 2 | 2 | 2 | |
Number of capacitors | 1 | 2 | 3 | 1 | 2 |
Buck-Boost | Cuk | SEPIC | Proposed | ||||
---|---|---|---|---|---|---|---|
Buck | Boost | Buck | Boost | Buck | Boost | Buck | Boost |
93.7% | 97.5% | 94.1% | 97.6% | 92.8% | 97.3% | 92.2% | 97.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, J.; Pires, V.F.; Foito, D.; Cordeiro, A.; Silva, J.F.; Pinto, S. A Buck-Boost Converter with Extended Duty-Cycle Range in the Buck Voltage Region for Renewable Energy Sources. Electronics 2023, 12, 584. https://doi.org/10.3390/electronics12030584
Monteiro J, Pires VF, Foito D, Cordeiro A, Silva JF, Pinto S. A Buck-Boost Converter with Extended Duty-Cycle Range in the Buck Voltage Region for Renewable Energy Sources. Electronics. 2023; 12(3):584. https://doi.org/10.3390/electronics12030584
Chicago/Turabian StyleMonteiro, Joaquim, V. Fernão Pires, Daniel Foito, Armando Cordeiro, J. Fernando Silva, and Sónia Pinto. 2023. "A Buck-Boost Converter with Extended Duty-Cycle Range in the Buck Voltage Region for Renewable Energy Sources" Electronics 12, no. 3: 584. https://doi.org/10.3390/electronics12030584
APA StyleMonteiro, J., Pires, V. F., Foito, D., Cordeiro, A., Silva, J. F., & Pinto, S. (2023). A Buck-Boost Converter with Extended Duty-Cycle Range in the Buck Voltage Region for Renewable Energy Sources. Electronics, 12(3), 584. https://doi.org/10.3390/electronics12030584