Dual-Channel Secure Communication Based on Wideband Optical Chaos in Semiconductor Lasers Subject to Intensity Modulation Optical Injection
Abstract
:1. Introduction
2. Principles and Theoretical Model
3. Numerical Results and Discussion
3.1. Synchronization Characteristics of Wideband Chaos Signals
3.2. Performance of Secure Communication
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Wiggeren, G.D.; Roy, R. Communication with chaotic lasers. Science 1998, 279, 1198–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argyris, A.; Syvridis, D.; Larger, L.; Annovazzi-Lodi, V.; Colet, P.; Fischer, I.; Garcia-Ojalvo, J.; Mirasso, C.R.; Pesquera, L.; Shore, K.A. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 2005, 438, 343–346. [Google Scholar] [CrossRef]
- Lavrov, R.; Jacquot, M.; Larger, L. Nonlocal Nonlinear Electro-Optic Phase Dynamics Demonstrating 10 Gb/s Chaos Communications. IEEE J. Quantum Electron. 2010, 46, 1430–1435. [Google Scholar] [CrossRef]
- Li, N.; Pan, W.; Yan, L.; Luo, B.; Xu, M.; Tang, Y.; Jiang, N.; Xiang, S.; Zhang, Q. Chaotic optical cryptographic communication using a three-semiconductor-laser scheme. J. Opt. Soc. Am. B Opt. Phys. 2012, 29, 101–108. [Google Scholar] [CrossRef]
- Sciamanna, M.; Shore, K.A. Physics and applications of laser diode chaos. Nat. Photonics 2015, 9, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Zhao, A.; Xue, C.; Tang, J.; Qiu, K. Physical secure optical communication based on private chaotic spectral phase encryption/decryption. Opt. Lett. 2019, 44, 1536–1539. [Google Scholar] [CrossRef]
- Spitz, O.; Herdt, A.; Wu, J.G.; Maisons, G.; Carras, M.; Wong, C.W.; Elsasser, W.; Grillot, F. Private communication with quantum cascade laser photonic chaos. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Y.; He, H. Enhancing the Bandwidth of the Optical Chaotic Signal Generated by a Semiconductor Laser With Optical Feedback. IEEE Photonics Technol. Lett. 2008, 20, 1633–1635. [Google Scholar] [CrossRef]
- Li, M.; Hong, Y.; Wang, S.; Song, Y.; Sun, X. Radiation-induced mismatch effect on performances of space chaos laser communication systems. Opt. Lett. 2018, 43, 5134–5137. [Google Scholar] [CrossRef]
- Li, N.; Susanto, H.; Cemlyn, B.; Henning, I.D.; Adams, M.J. Secure communication systems based on chaos in optically pumped spin-VCSELs. Opt. Lett. 2017, 42, 3494–3497. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.; Li, P.; Zhao, T.; Jia, Z.; Gao, Z.; Guo, Y.; Wang, Y.; Wang, A. Bias Current of Semiconductor Laser: An Unsafe Key for Secure Chaos Communication. Photonics 2019, 6, 59. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Wang, Y.; Wang, A. Eavesdropping in chaotic optical communication using the feedback length of an external-cavity laser as a key. Appl. Opt. 2009, 48, 3515–3520. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Pan, W.; Yan, L.; Luo, B.; Xu, M.; Jiang, N.; Tang, Y. On joint identification of the feedback parameters for hyperchaotic systems: An optimization-based approach. Chaos Solitons Fractals 2011, 44, 198–207. [Google Scholar] [CrossRef]
- Kurdoglyan, M.S.; Kim, C.M.; Kim, G.U. Effects of nonlinear self-phase modulation of the transmitted signal on synchronization behavior of chaotic semiconductor lasers. J. Opt. Soc. Am. B Opt. Phys. 2004, 21, 2107–2111. [Google Scholar] [CrossRef]
- Rontani, D.; Locquet, A.; Sciamanna, M.; Citrin, D.S. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. Opt. Lett. 2007, 32, 2960–2962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Wu, Z.-M.; Wu, J.-G.; Xia, G.-Q. Long-haul dual-channel bidirectional chaos communication based on polarization-resolved chaos synchronization between twin 1550 nM VCSELs subject to variable-polarization optical injection. Opt. Commun. 2015, 334, 214–221. [Google Scholar] [CrossRef]
- Wu, J.-G.; Xia, G.-Q.; Wu, Z.-M. Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback. Optics Express 2009, 17, 20124–20133. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-S.; Liu, Q.; Chan, S.-C. Distributed Feedbacks for Time-Delay Signature Suppression of Chaos Generated From a Semiconductor Laser. IEEE Photonics J. 2012, 4, 1930–1935. [Google Scholar] [CrossRef]
- Wang, L.; Mao, X.; Wang, A.; Wang, Y.; Gao, Z.; Li, S.; Yan, L. Scheme of coherent optical chaos communication. Opt. Lett. 2020, 45, 4762–4765. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-H.; Chen, Y.-C.; Lin, F.-Y. Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning. Opt. Express 2015, 23, 2308–2319. [Google Scholar] [CrossRef]
- Wang, A.; Wang, L.; Li, P.; Wang, Y. Minimal-post-processing 320-Gbps true random bit generation using physical white chaos. Opt. Express 2017, 25, 3153–3164. [Google Scholar] [CrossRef] [Green Version]
- Kovanis, V.; Gavrielides, A.; Simpson, T.B.; Liu, J.M. Instabilities and chaos in optically injected semiconductor-lasers. Appl. Phys. Lett. 1995, 67, 2780–2782. [Google Scholar] [CrossRef]
- Wang, A.-B.; Wang, Y.-C.; Wang, J.-F. Route to broadband chaos in a chaotic laser diode subject to optical injection. Opt. Lett. 2009, 34, 1144–1146. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-Z.; Zhuang, J.-P.; Li, S.-S.; Gao, J.-B.; Chan, S.-C. Randomness evaluation for an optically injected chaotic semiconductor laser by attractor reconstruction. Phys. Rev. E 2016, 94, 042214. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.Y.; Liu, J.M. Chaotic lidar. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 991–997. [Google Scholar] [CrossRef]
- Hwang, S.K.; Liu, J.M. Dynamical characteristics of an optically injected semiconductor laser. Opt. Commun. 2000, 183, 195–205. [Google Scholar] [CrossRef]
- Chan, S.-C.; Tang, W.K.S. Chaotic dynamics of laser diodes with strongly modulated optical injection. Int. J. Bifurc. Chaos 2009, 19, 3417–3424. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Hwang, S.-K. Broadband chaotic microwave generation through destabilization of period-one nonlinear dynamics in semiconductor lasers for radar applications. Opt. Lett. 2020, 45, 3777–3780. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhou, P.; Huang, Y.; Li, N. Optical chaos generated in semiconductor lasers with intensity-modulated optical injection: A numerical study. Appl. Opt. 2021, 60, 7963–7972. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Funabashi, R.; Kanno, K.; Uchida, A.; Wei, C.-C.; Hwang, S.-K. High-entropy chaos generation using semiconductor lasers subject to intensity-modulated optical injection for certified physical random number generation. Opt. Lett. 2021, 46, 3384–3387. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Pan, W.; Luo, B.; Yan, L.; Zou, X.; Jiang, N.; Xiang, S. High Bit Rate Fiber-Optic Transmission Using a Four-Chaotic-Semiconductor-Laser Scheme. IEEE Photonics Technol. Lett. 2012, 24, 1072–1074. [Google Scholar] [CrossRef]
- Mirasso, C.R.; Colet, P.; GarciaFernandez, P. Synchronization of chaotic semiconductor lasers: Application to encoded communications. IEEE Photonics Technol. Lett. 1996, 8, 299–301. [Google Scholar] [CrossRef]
- Lin, F.Y.; Liu, J.M. Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback. Opt. Commun. 2003, 221, 173–180. [Google Scholar] [CrossRef]
- Amiri, I.S.; Ali, J. Femtosecond Optical Quantum Memory Generation Using Optical Bright Soliton. J. Comput. Theor. Nanosci. 2014, 11, 1480–1485. [Google Scholar] [CrossRef]
- Wang, A.; Yang, Y.; Wang, B.; Zhang, B.; Li, L.; Wang, Y. Generation of wideband chaos with suppressed time-delay signature by delayed self-interference. Opt. Express 2013, 21, 8701–8710. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Pan, W.; Locquet, A.; Citrin, D.S. Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection. Opt. Lett. 2015, 40, 4416–4419. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Zhao, A.; Liu, S.; Xue, C.; Qiu, K. Chaos synchronization and communication in closed-loop semiconductor lasers subject to common chaotic phase-modulated feedback. Opt. Express 2018, 26, 32404–32416. [Google Scholar] [CrossRef]
- Bogris, A.; Rizomiliotis, P.; Chlouverakis, K.E.; Argyris, A.; Syvridis, D. Feedback phase in optically generated chaos: A secret key for cryptographic applications. IEEE J. Quantum Electron. 2008, 44, 119–124. [Google Scholar] [CrossRef]
Symbol | Parameter | Value |
---|---|---|
linewidth enhancement factor | 4.5 | |
gain coefficient | 10−12 m3/s | |
carrier density at transparency | 1024 m−3 | |
photon lifetime | 2 ps | |
carrier lifetime | 2 ns | |
threshold current | 18 mA | |
electronic charge | 1.602 × 10−19 C | |
volume of the active region | 1.5 × 10−16 m3 | |
injection ratio | 40 ns−1 | |
frequency detuning | −30 GHz | |
round-trip time | 9 ps | |
amplitude reflectivity of the laser facet | 0.3 | |
amplitude reflectivity of external mirror | 0.1 | |
message modulation depth | 0.08 | |
the normalized bias | 0.785 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Huang, Y.; Zhou, P.; Li, N. Dual-Channel Secure Communication Based on Wideband Optical Chaos in Semiconductor Lasers Subject to Intensity Modulation Optical Injection. Electronics 2023, 12, 509. https://doi.org/10.3390/electronics12030509
Wang Y, Huang Y, Zhou P, Li N. Dual-Channel Secure Communication Based on Wideband Optical Chaos in Semiconductor Lasers Subject to Intensity Modulation Optical Injection. Electronics. 2023; 12(3):509. https://doi.org/10.3390/electronics12030509
Chicago/Turabian StyleWang, Youming, Yu Huang, Pei Zhou, and Nianqiang Li. 2023. "Dual-Channel Secure Communication Based on Wideband Optical Chaos in Semiconductor Lasers Subject to Intensity Modulation Optical Injection" Electronics 12, no. 3: 509. https://doi.org/10.3390/electronics12030509