Rotor Fault Diagnosis Method Using CNN-Based Transfer Learning with 2D Sound Spectrogram Analysis
Abstract
:1. Introduction
2. Theoretical Background
2.1. Short-Time Fourier Transform
2.2. Convolutional Neural Networks
2.3. Transfer Learning Model
3. Development of Fault Diagnosis Method Using CNN-Based Transfer Learning
3.1. Design of an Artificial Neural Network System
3.2. Data Collection
3.3. Spectrogram Images Generation
3.4. Xception Model Structure Design
4. Experimental Results
4.1. Configuration of the Embedded System
4.2. Results of Xception Model Learning
4.3. Result Applied to the Embedded System
5. Conclusions and Future Research Plans
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spandonidis, C.; Theodoropoulos, P.; Giannopoulos, F.; Galiatsatos, N.; Petsa, A. Evaluation of deep learning approaches for oil & gas pipeline leak detection using wireless sensor networks. Eng. Appl. Artif. Intell. 2022, 113, 104890. [Google Scholar]
- Yang, G.H.; Min, B.W. The Development of Detection System of Conveyer Belt Damage using Magnetic Flux. J. Korean Electron. Telecommun. Assoc. 2013, 8, 815–822. [Google Scholar]
- Peng, C.; Li, Z.; Yang, M.; Fei, M.; Wang, Y. An audio-based intelligent fault diagnosis method for belt conveyor rollers in sand carrier. Control Eng. Pract. 2020, 105, 104650. [Google Scholar] [CrossRef]
- Hong, Y.L.; Ha, S.R.; Kim, T.W. Design of The Smart Conveyer Belt Control Mechanism using Arduino. J. Internet Things Soc. Korea 2016, 2, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Gao, S.; Wang, L.; Li, X.; Li, B.; Pang, S. A novel intelligent fault diagnosis method for rolling bearings based on Wasserstein generative adversarial network and Convolutional Neural Network under Unbalanced Dataset. Sensors 2021, 21, 6754. [Google Scholar] [CrossRef] [PubMed]
- Theodoropoulos, P.; Spandonidis, C.C.; Fassois, S. Use of Convolutional Neural Networks for vessel performance optimization and safety enhancement. Ocean. Eng. 2022, 248, 110771. [Google Scholar] [CrossRef]
- Hou, Y.; He, R.; Dong, J.; Yang, Y.; Ma, W. IoT Anomaly Detection Based on Autoencoder and Bayesian Gaussian Mixture Model. Electronics 2022, 11, 3287. [Google Scholar] [CrossRef]
- Ahn, H.; Yeo, I. Deep-Learning-Based Approach to Anomaly Detection Techniques for Large Acoustic Data in Machine Operation. Sensors 2021, 21, 5446. [Google Scholar] [CrossRef]
- Yu, L.; Qu, J.; Gao, F.; Tian, Y. A novel hierarchical algorithm for bearing fault diagnosis based on stacked LSTM. Shock. Vib. 2019, 2019, 2756284. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Wang, Y.; Wang, K. A deep learning approach for anomaly detection based on SAE and LSTM in mechanical equipment. Int. J. Adv. Manuf. Technol. 2019, 103, 499–510. [Google Scholar] [CrossRef]
- Keelawat, P.; Thammasan, N.; Numao, M.; Kijsirikul, B. A comparative study of window size and channel arrangement on EEG-emotion recognition using deep CNN. Sensors 2021, 21, 1678. [Google Scholar] [CrossRef] [PubMed]
- Alhalaseh, R.; Alasasfeh, S. Machine-learning-based emotion recognition system using EEG signals. Computers 2020, 9, 95. [Google Scholar] [CrossRef]
- Khan, M.; Salsabil, N.; Alam, M.; Rabiul, G.; Dewan, M.; Uddin, M. CNN-XGBoost fusion-based affective state recognition using EEG spectrogram image analysis. Sci. Rep. 2022, 12, 14122. [Google Scholar] [CrossRef] [PubMed]
- Shahini, N.; Bahrami, Z.; Sheykhivand, S.; Marandi, S.; Danishvar, M.; Danishvar, S.; Roosta, Y. Automatically Identified EEG Signals of Movement Intention Based on CNN Network (End-To-End). Electronics 2022, 11, 3297. [Google Scholar] [CrossRef]
- Ullah, A.; Anwar, S.M.; Bilal, M.; Mehmood, R.M. Classification of arrhythmia by using deep learning with 2-D ECG spectral image representation. Remote Sens. 2020, 12, 1685. [Google Scholar] [CrossRef]
- Li, G.; Deng, C.; Wu, J.; Chen, Z.; Xu, X. Rolling bearing fault diagnosis based on wavelet packet transform and convolutional neural network. Appl. Sci. 2020, 10, 770. [Google Scholar] [CrossRef] [Green Version]
- Saha, D.K.; Hoque, M.E.; Badihi, H. Development of Intelligent Fault Diagnosis Technique of Rotary Machine Element Bearing: A Machine Learning Approach. Sensors 2022, 22, 1073. [Google Scholar] [CrossRef] [PubMed]
- Verstraete, D.; Ferrada, A.; Droguett, E.L.; Meruane, V.; Modarres, M. Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings. Shock. Vib. 2017, 2017, 5067651. [Google Scholar] [CrossRef] [Green Version]
- Liang, P.; Deng, C.; Wu, J.; Yang, Z.; Zhu, J. Intelligent fault diagnosis of rolling element bearing based on convolutional neural network and frequency spectrograms. In Proceedings of the 2019 IEEE International Conference on Prognostics and Health Management (ICPHM), San Francisco, CA, USA, 17–20 June 2019; pp. 1–5. [Google Scholar]
- Pandhare, V.; Singh, J.; Lee, J. Convolutional neural network based rolling-element bearing fault diagnosis for naturally occurring and progressing defects using time-frequency domain features. In Proceedings of the 2019 Prognostics and System Health Management Conference (PHM-Paris), Paris, France, 2–5 May 2019; pp. 320–326. [Google Scholar]
- Tao, H.; Wang, P.; Chen, Y.; Stojanovic, V.; Yang, H. An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks. J. Frankl. Inst. 2020, 357, 7286–7307. [Google Scholar] [CrossRef]
- Du, Y.; Wang, A.; Wang, S.; He, B.; Meng, G. Fault diagnosis under variable working conditions based on STFT and transfer deep residual network. Shock. Vib. 2020, 2020, 1274380. [Google Scholar] [CrossRef]
- Goodwin, M.M. Realization of arbitrary filters in the STFT domain. In Proceedings of the 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA, 18–21 October 2009; pp. 353–356. [Google Scholar]
- Huang, J.; Chen, B.; Yao, B.; He, W. ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network. IEEE Access 2019, 7, 92871–92880. [Google Scholar] [CrossRef]
- Seo, Y.; Jang, B.; Im, S. Drone detection using convolutional neural networks with acoustic STFT features. In Proceedings of the 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Auckland, New Zealand, 27–30 November 2018; pp. 1–6. [Google Scholar]
- Shovon, T.H.; Al Nazi, Z.; Dash, S.; Hossain, M.F. Classification of motor imagery EEG signals with multi-input convolutional neural network by augmenting STFT. In Proceedings of the 2019 5th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 26–28 September 2019; pp. 398–403. [Google Scholar]
- Wang, B.; Feng, G.; Huo, D.; Kang, Y. A bearing fault diagnosis method based on spectrum map information fusion and convolutional neural network. Processes 2022, 10, 1426. [Google Scholar] [CrossRef]
- Bu, S.J.; Cho, S.B. Speaker Identification Method based on Convolutional Neural Network with STFT Sound-Map. KIISE Trans. Comput. Pract. 2018, 24, 289–294. [Google Scholar] [CrossRef] [Green Version]
- McFee, B.; Raffel, C.; Liang, D.; Ellis, D.P.; McVicar, M.; Battenberg, E.; Nieto, O. librosa: Audio and music signal analysis in python. In Proceedings of the 14th Python in Science Conference, Austin, TX, USA, 6–12 July 2015; Volume 8, pp. 18–25. [Google Scholar]
- Chao, K.C.; Chou, C.B.; Lee, C.H. Online Domain Adaptation for Rolling Bearings Fault Diagnosis with Imbalanced Cross-Domain Data. Sensors 2022, 22, 4540. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Zeng, X.; Li, W. Wavelet transform based convolutional neural network for gearbox fault classification. In Proceedings of the 2017 Prognostics and System Health Management Conference (PHM-Harbin), Harbin, China, 9–12 July 2017; pp. 1–6. [Google Scholar]
- Zhang, K.; Wang, J.; Shi, H.; Zhang, X.; Tang, Y. A fault diagnosis method based on improved convolutional neural network for bearings under variable working conditions. Measurement 2021, 182, 109749. [Google Scholar] [CrossRef]
- Liu, X.; Sun, W.; Li, H.; Hussain, Z.; Liu, A. The Method of Rolling Bearing Fault Diagnosis Based on Multi-Domain Supervised Learning of Convolution Neural Network. Energies 2022, 15, 4614. [Google Scholar] [CrossRef]
- Qin, Y.; Shi, X. Fault diagnosis method for rolling bearings based on two-channel CNN under unbalanced datasets. Appl. Sci. 2022, 12, 8474. [Google Scholar] [CrossRef]
- Torrey, L.; Shavlik, J. Transfer learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques; IGI Global: Hershey, PN, USA, 2010; pp. 242–264. [Google Scholar]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 1–40. [Google Scholar] [CrossRef]
- Team, K. Keras Documentation: Keras Applications. Available online: https://keras.io/api/applications (accessed on 29 November 2022).
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
Model | Size (MB) | Top-1 Accuracy | Top-5 Accuracy | Parameters | Depth |
---|---|---|---|---|---|
Xception | 88 | 79.0% | 94.5% | 22.9 M | 81 |
VGG16 | 528 | 71.3% | 90.1% | 138.4 M | 16 |
VGG16 | 549 | 71.3% | 90.0% | 143.7 M | 19 |
ResNet50 | 98 | 74.9% | 92.1% | 25.6 M | 107 |
ResNet50V2 | 98 | 76.0% | 93.0% | 25.6 M | 103 |
Name of Component | Content and Value | |
---|---|---|
Optimizer | Adam | |
Mini-batch size | 32 | |
Epoch | 1000 | |
Loss | Binary cross entropy | |
Callback | Patience (validation loss) | 10 |
Model checkpoint | Best validation accuracy |
Name | Precision | Accuracy | Recall | F1-Score | Total Data No. | |
---|---|---|---|---|---|---|
Xception | normal | 0.993 | 0.995 | 0.998 | 0.995 | 2000 |
fault | 0.998 | 0.993 | 0.995 | 2000 | ||
VGG16 | normal | 0.995 | 0.996 | 0.997 | 0.996 | 2000 |
fault | 0.997 | 0.995 | 0.996 | 2000 | ||
VGG19 | normal | 0.995 | 0.990 | 0.986 | 0.990 | 2000 |
fault | 0.986 | 0.995 | 0.990 | 2000 | ||
ResNet50 | normal | 0.986 | 0.986 | 0.988 | 0.987 | 2000 |
fault | 0.988 | 0.986 | 0.987 | 2000 |
Name | Accuracy [%] | Total Data No. | True | False |
---|---|---|---|---|
Normal | 94.89 | 900 | 854 | 46 |
Fault | 99.44 | 900 | 895 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, H.; Choi, S.; Lee, B. Rotor Fault Diagnosis Method Using CNN-Based Transfer Learning with 2D Sound Spectrogram Analysis. Electronics 2023, 12, 480. https://doi.org/10.3390/electronics12030480
Jung H, Choi S, Lee B. Rotor Fault Diagnosis Method Using CNN-Based Transfer Learning with 2D Sound Spectrogram Analysis. Electronics. 2023; 12(3):480. https://doi.org/10.3390/electronics12030480
Chicago/Turabian StyleJung, Haiyoung, Sugi Choi, and Bohee Lee. 2023. "Rotor Fault Diagnosis Method Using CNN-Based Transfer Learning with 2D Sound Spectrogram Analysis" Electronics 12, no. 3: 480. https://doi.org/10.3390/electronics12030480